5.給出下列說法:
①不等于2的所有偶數(shù)可以組成一個(gè)集合;
②高一年級的所有高個(gè)子同學(xué)可以組成一個(gè)集合;
③{1,2,3,}與{2,3,1}是不同的集合;
④2016年里約奧約會比賽項(xiàng)目.
其中正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

分析 ①根據(jù)集合元素的特性“確定性”進(jìn)行判斷;
②“高個(gè)子”不明確,故不能構(gòu)成集合;
③根據(jù)兩個(gè)集合中的元素完全相同,則集合相等進(jìn)行判斷;
④顯然判定一個(gè)對象是否屬于該集合的條件明確,故④是真命題.

解答 解:對于①④:由集合元素的特性“確定性”可知,題目所給的限制條件能夠明確的判斷一個(gè)對象是否為該集合的元素,故①④皆為真命題;
對于②:高個(gè)子不明確,不能說明怎樣才算高個(gè)子,也就不能判斷一位同學(xué)是否為該集合的元素,故③為假命題;
對于③:兩集合相等只需元素完全相同即可,不需要順序也相同,故③為假命題.
故選C.

點(diǎn)評 本題考查了集合的定義、集合中元素的特性等知識,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)是定義在R上的偶函數(shù),且最小正周期為2,若0≤x≤1時(shí),f(x)=x,則f(-1)+f(-2017)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)=2sin(ωx+φ)對任意x都有f(${\frac{π}{3}$+x)=f(-x),則f($\frac{π}{6}}$)=( 。
A.2或0B.0C.-2或0D.-2或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,三邊a,b,c所對的角分別為A,B,C,若a2+b2=$\sqrt{2}$ab+c2,則角C為450

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,球O的半徑為5,一個(gè)內(nèi)接圓臺的兩底面半徑分別為3和4(球心O在圓臺的兩底面之間),則圓臺的體積為$\frac{259π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,關(guān)于數(shù)列{an}有下列四個(gè)結(jié)論:
①若數(shù)列{an}既是等差數(shù)列又是等比數(shù)列,則Sn=na1
②若Sn=2n-1,則數(shù)列{an}是等比數(shù)列;
③若Sn=an2+bn(a,b∈R),則數(shù)列{an}是等差數(shù)列;
④若Sn=an(a∈R),則數(shù)列{an}既是等差數(shù)列又是等比數(shù)列.
其中正確結(jié)論的序號是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行下面的程序框圖,則輸出結(jié)果S=( 。
A.$\frac{21}{16}$B.$\frac{85}{64}$C.$\frac{63}{32}$D.$\frac{127}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.要得到函數(shù)y=sin2x的圖象,只需將y=sin(2x+$\frac{π}{4}$)的圖象( 。
A.向左平移$\frac{π}{8}$個(gè)單位長度B.向右平移$\frac{π}{8}$個(gè)單位長度
C.向左平移$\frac{π}{4}$個(gè)單位長度D.向右平移$\frac{π}{4}$個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖所示的平面區(qū)域所對應(yīng)的不等式組是(  )
A.$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≥0}\\{2x-y-2≤0}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≥0}\\{2x-y-2≥0}\end{array}}\right.$
C.$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≤0}\\{2x-y-2≤0}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≤0}\\{2x-y-2≥0}\end{array}}\right.$

查看答案和解析>>

同步練習(xí)冊答案