已知拋物線y2=4x的弦AB經過它的焦點F,弦AB的長為20,求直線AB的方程.
考點:拋物線的簡單性質
專題:圓錐曲線的定義、性質與方程
分析:由y2=4x,準線x=-
p
2
=-1,焦點(1,0),設y=k(x-1),代入y2=4x,得k2x2-(2k2+4)x+k2=0,設A(x1,y1),B(x2,y2),則x1+x2=
2k2+4
k2
,由|AB|=|AF|+|BF|,拋物線到焦點距離等于到準線距離,知x1+x2=
2k2+4
k2
=18,由此能求出直線方程.
解答: 解:∵y2=4x,∴2p=4,
所以準線x=-
p
2
=-1,焦點(1,0),
若直線斜率不存在,則AB是x=1與y2=4交點之間的距離,顯然|AB|=20不成立,
所以斜率存在.設y=k(x-1),代入y2=4x,
得k2x2-2k2x+k2=4x,
即k2x2-(2k2+4)x+k2=0,
設A(x1,y1),B(x2,y2),則x1+x2=
2k2+4
k2
,
又|AB|=|AF|+|BF|,拋物線到焦點距離等于到準線距離,
則A到準線距離為:x1-(-1)=x1+1,B到準線距離為:x2+1,
所以x1+1+x2+1=|AF|+|BF|=20,
∴x1+x2=
2k2+4
k2
=18,
解得k=±
1
2
,所以所求的直線方程為x+2y-1=0,或x-2y+1=0.
點評:本題考查直線方程的求法,具體涉及到拋物線的簡單性質,直線與拋物線的位置關系,解題時要認真審題,仔細解答,注意合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

化簡
sin(3π-α)cos(α-
2
)cos(4π+α)
tan(α-5π)cos(
π
2
+α)sin(α-
2
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四面體ABCD中,BC-AB,BD-AD截面EFGH平行于對棱AB和CD.
(1)判斷截面的形狀;
(2)AC=AD,BC=BD,證明:AB⊥CD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知各項都為整數(shù)的等差數(shù)列{an}的前n項和為Sn,若S5=35,且a2,a3+1,a6成等比數(shù)列.
(1)求{an}的通項公式;
(2)記bn=
an
3n
的前n項和為Tn,求證Tn
5
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在棱長為1的正方體ABCD-A1B1C1D1中,求:
(1)三棱錐C1-A1B1B的體積;
(2)異面直線A1B與AC所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn=3an-2.
(Ⅰ)求數(shù)列{an}的通項;
(Ⅱ)設bn=log1.5an,求數(shù)列{an•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知1≤m≤4,-2<n<3,求m+n,mn的取值范圍;
(2)若對任意x∈R,|x+2|+|x-1|>a-x2+2x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1的傾斜角為45°,若直線l2⊥l1且l2在y軸上的截距為-1,求直線l2的方程并畫出直線l2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是函數(shù)y=Asin(ωx+φ)x∈R在區(qū)間[-
π
6
6
]上的圖象,為了得到這個函數(shù)的圖象,只要將y=cos(x-
π
2
),(x∈R)的圖象上所有的點(  )
A、向左平移
π
6
個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
B、向左平移
π
6
個單位長度,再把所得各點的橫坐標縮短到原來的
1
2
倍,縱坐標不變
C、向左平移
π
3
個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
D、向左平移
π
3
個單位長度,再把所得各點的橫 坐標縮短到原來的
1
2
倍,縱坐標不變

查看答案和解析>>

同步練習冊答案