20.已知橢圓$\frac{{x}^{2}}{9+k}$+$\frac{{y}^{2}}{5-k}$=1的離心率為$\frac{1}{2}$,則實數(shù)k的值為( 。
A.-1B.47C.-1或-3D.-1或3

分析 利用橢圓的離心率,列出方程求解即可.

解答 解:當焦點在x軸時,橢圓$\frac{{x}^{2}}{9+k}$+$\frac{{y}^{2}}{5-k}$=1的離心率為$\frac{1}{2}$,
可得:$\frac{4+2k}{9+k}$=$\frac{1}{4}$,解得k=-1;
當焦點在y軸時,橢圓$\frac{{x}^{2}}{9+k}$+$\frac{{y}^{2}}{5-k}$=1的離心率為$\frac{1}{2}$,
可得:$\frac{-4-2k}{5-k}=\frac{1}{4}$,解得k=-3;
所以k的取值為:-1或-3.
故選:C.

點評 本題考查橢圓的簡單性質的應用,注意橢圓的焦點所在軸,是易錯點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合A={-3,-2,-1,0,1,2},B={x|(x+3)(x-1)<0},則A∩B=(  )
A.{0,1,2}B.{-2,-1,0}C.{-3,-2,-1,0,1}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知在△ABC中,角A,B,C的對邊分別為a,b,c,若$\frac{{a}^{2}+^{2}-{c}^{2}}{{a}^{2}+{c}^{2}-^{2}}$=$\frac{2sinA-sinC}{sinC}$,且b=4.
(1)求角B;
(2)求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在△OAB中,$\overrightarrow{OC}$=$\frac{1}{4}$$\overrightarrow{OA}$,$\overrightarrow{OD}$=$\frac{1}{2}$$\overrightarrow{OB}$,AD與BC交于點M,設$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$.
(1)用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{OM}$;
(2)在線段AC上取一點E,在線段BD上取一點F,使EF過M點,設$\overrightarrow{OE}$=p$\overrightarrow{OA}$,$\overrightarrow{OF}$=q$\overrightarrow{OB}$,求證:$\frac{1}{7p}$+$\frac{3}{7q}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=|x+3|+|x-2|
(Ⅰ)若?x∈R,f(x)≥6a-a2恒成立,求實數(shù)a的取值范圍
(Ⅱ)求函數(shù)y=f(x)的圖象與直線y=9圍成的封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA垂直底面ABCD,PA=AB=2,E是棱PB的中點.
(1)若AD=2,求B到平面CDE的距離;
(2)若平面ACE與平面CED夾角的余弦值為$\frac{3\sqrt{17}}{17}$,求此時AD的長為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設函數(shù)f(x)=t|x-t|(t≠0)在區(qū)間(-∞,-1]上單調遞增,則t的取值范圍是( 。
A.(-∞,-1]B.[-1,0)C.(0,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)y=e2x-1的零點是0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設數(shù)列{an}的前n項和為Sn,已知Sn=2n+1-n-2(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=$\frac{n}{{a}_{n+1}-{a}_{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案