分析 由已知數列遞推式,利用累積法求得數列的通項公式.
解答 解:由$\frac{{{a_{n+1}}}}{a_n}=\frac{n+2}{n}$,得
$\frac{{a}_{2}}{{a}_{1}}=\frac{3}{1}$,$\frac{{a}_{3}}{{a}_{2}}=\frac{4}{2}$,$\frac{{a}_{4}}{{a}_{3}}=\frac{5}{3}$,$\frac{{a}_{5}}{{a}_{4}}=\frac{6}{4}$,…,
$\frac{{a}_{n-1}}{{a}_{n-2}}=\frac{n}{n-2}$,$\frac{{a}_{n}}{{a}_{n-1}}=\frac{n+1}{n-1}$(n≥2).
累積得:$\frac{{a}_{n}}{{a}_{1}}=\frac{n(n+1)}{2}$(n≥2).
∵a1=1,∴${a}_{n}=\frac{n(n+1)}{2}$(n≥2).
驗證n=1時,上式成立.
∴${a}_{n}=\frac{n(n+1)}{2}$(n∈N*).
故答案為:$\frac{n(n+1)}{2}(n∈{N}^{*})$.
點評 本題考查數列遞推式,考查了累積法求數列的通項公式,是中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{55}}{55}$ | C. | $\frac{\sqrt{11}}{11}$ | D. | $\frac{\sqrt{55}}{11}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com