已知雙曲線(xiàn)焦點(diǎn)在x軸上、中心在坐標(biāo)原點(diǎn)O,左、右焦點(diǎn)分別為F1、F2,P為雙曲線(xiàn)右支上一點(diǎn),且,∠F1F2P=90°.
(Ⅰ)求雙曲線(xiàn)的離心率;
(Ⅱ)若過(guò)F1且斜率為1的直線(xiàn)l與雙曲線(xiàn)的兩漸近線(xiàn)分別交于A(yíng)、B兩點(diǎn),△AOB的面積為,求雙曲線(xiàn)的方程.
【答案】分析:(Ⅰ)設(shè)雙曲線(xiàn)方程為,由,∠F1F2P=90°及勾股定理得,由此能求出雙曲線(xiàn)的離心率.
(Ⅱ)由,知,雙曲線(xiàn)的兩漸近線(xiàn)方程為.設(shè)l的方程為y=x+c,l與y軸的交點(diǎn)為M(0,c).若l與y=交于點(diǎn)A,l與y=-交于點(diǎn)B,由,得;由,得,再由=,能求出雙曲線(xiàn)方程.
解答:解:(Ⅰ)設(shè)雙曲線(xiàn)方程為,
,∠F1F2P=90°及勾股定理得,
由雙曲線(xiàn)定義得 

(Ⅱ)∵,∴,雙曲線(xiàn)的兩漸近線(xiàn)方程為
由題意,設(shè)l的方程為y=x+c,l與y軸的交點(diǎn)為M(0,c).
若l與y=交于點(diǎn)A,l與y=-交于點(diǎn)B,
,得;由,得,

=
=
∴c=4,
∴a=2,則
故雙曲線(xiàn)方程為
點(diǎn)評(píng):本題考查雙曲線(xiàn)的離心率和雙曲線(xiàn)方程的求法,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,靈活運(yùn)用雙曲線(xiàn)的性質(zhì),合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)焦點(diǎn)在x軸上、中心在坐標(biāo)原點(diǎn)O,左、右焦點(diǎn)分別為F1、F2,P為雙曲線(xiàn)右支上一點(diǎn),且|
F1F2
|=
4
3
|
F2P
|
,∠F1F2P=90°.
(Ⅰ)求雙曲線(xiàn)的離心率;
(Ⅱ)若過(guò)F1且斜率為1的直線(xiàn)l與雙曲線(xiàn)的兩漸近線(xiàn)分別交于A(yíng)、B兩點(diǎn),△AOB的面積為8
3
,求雙曲線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一焦點(diǎn)在x軸上,中心在原點(diǎn)的雙曲線(xiàn)的實(shí)軸等于虛軸,且圖象經(jīng)過(guò)點(diǎn)
2,
3

(1)求該雙曲線(xiàn)的方程;
(2)若直線(xiàn)y=kx+1與該雙曲線(xiàn)只有一個(gè)公共點(diǎn),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線(xiàn)焦點(diǎn)在x軸上、中心在坐標(biāo)原點(diǎn)O,左、右焦點(diǎn)分別為F1、F2,P為雙曲線(xiàn)右支上一點(diǎn),且數(shù)學(xué)公式,∠F1F2P=90°.
(Ⅰ)求雙曲線(xiàn)的離心率;
(Ⅱ)若過(guò)F1且斜率為1的直線(xiàn)l與雙曲線(xiàn)的兩漸近線(xiàn)分別交于A(yíng)、B兩點(diǎn),△AOB的面積為數(shù)學(xué)公式,求雙曲線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省鶴山一中高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知一焦點(diǎn)在x軸上,中心在原點(diǎn)的雙曲線(xiàn)的實(shí)軸等于虛軸,且圖象經(jīng)過(guò)點(diǎn)
(1)求該雙曲線(xiàn)的方程;
(2)若直線(xiàn)y=kx+1與該雙曲線(xiàn)只有一個(gè)公共點(diǎn),求實(shí)數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案