若兩條直線y=x+2a,y=2x+a的交點(diǎn)P在圓(x-1)2+(y-1)2=4的內(nèi)部,則實(shí)數(shù)a的取值范圍是 ________.

<a<1
分析:先求出兩條直線的交點(diǎn)坐標(biāo),利用交點(diǎn)到圓心的距離小于半徑列出不等式,解出實(shí)數(shù)a的取值范圍.
解答:∵兩條直線y=x+2a,y=2x+a的交點(diǎn)P在圓(x-1)2+(y-1)2=4的內(nèi)部,
兩條直線y=x+2a,y=2x+a的交點(diǎn)坐標(biāo)為(a,3a),∴(a-1)2+(3a-1)2<4,
∴-<a<1,
故答案為:-<a<1.
點(diǎn)評(píng):本題考查點(diǎn)與圓的位置關(guān)系,點(diǎn)在圓內(nèi)等價(jià)于點(diǎn)到圓心的距離小于圓的半徑.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在直線y=x-2上是否存在點(diǎn)P,使得經(jīng)過(guò)點(diǎn)P能作出拋物線y=
12
x2
的兩條互相垂直的切線?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,離心率為
3
3
,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線y=x+2相切.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)F是橢圓在y軸正半軸上的一個(gè)焦點(diǎn),點(diǎn)A,B是拋物線x2=4y上的兩個(gè)動(dòng)點(diǎn),且滿足
AF
FB
 (λ>0)
,過(guò)點(diǎn)A,B分別作拋物線的兩條切線,設(shè)兩切線的交點(diǎn)為M,試推斷
FM
AB
是否為定值?若是,求出這個(gè)定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的焦點(diǎn)為F1(-c,0)、F2(c,0)(c>0),焦點(diǎn)F2到漸近線的距離為
3
,兩條準(zhǔn)線之間的距離為1.
(1)求此雙曲線的方程;
(2)若直線y=x+2與雙曲線分別相交于A、B兩點(diǎn),求線段AB的長(zhǎng);
(3)過(guò)雙曲線焦點(diǎn)F2且與(2)中AB平行的直線與雙曲線分別相交于C、D兩點(diǎn),若
AB
+
AD
=
AC
,求
1
2
(
OA
OD
)tan<
OA
,
OD
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若兩條直線y=x+2a,y=2x+a的交點(diǎn)P在圓(x-1)2+(y-1)2=4的內(nèi)部,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案