已知m,n是兩條不同直線(xiàn),α,β,γ是三個(gè)不同平面,下列命題中正確的是( 。
A、若α⊥γ,β⊥γ,則α∥β
B、若m⊥α,n⊥α,則m∥n
C、若m∥α,n∥α,則m∥n
D、若m∥α,m∥β,則α∥β
考點(diǎn):空間中直線(xiàn)與平面之間的位置關(guān)系
專(zhuān)題:空間位置關(guān)系與距離
分析:利用空間中線(xiàn)線(xiàn)、線(xiàn)面、面面間的位置關(guān)系求解.
解答: 解:若α⊥γ,β⊥γ,則α與β相交或平行,故A正確;
若m⊥α,n⊥α,則由直線(xiàn)與平面垂直的性質(zhì)得m∥n,故B正確;
若m∥α,n∥α,則m與n相交、平行或異面,故C錯(cuò)誤;
若m∥α,m∥β,則α與β相交或平行,故D錯(cuò)誤.
故選:A.
點(diǎn)評(píng):本題考查命題真假的判斷,是中檔題,解題時(shí)要注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市居民自來(lái)水收費(fèi)標(biāo)準(zhǔn)如下,每戶(hù)每月用水不超過(guò)4噸時(shí),每噸為2元,當(dāng)用水超過(guò)4噸時(shí),超過(guò)部分每噸5元,若甲、乙兩用戶(hù)某月用水量比為5:3,且該月甲、乙兩戶(hù)共交水費(fèi)19元,則甲、乙兩戶(hù)該月的水費(fèi)分別為
 
,
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)椋?∞,0)∪(0,+∞),且滿(mǎn)足條件:
①f(a×b)=f(a)+f(b);②f(2)=1; ③當(dāng)x>0時(shí),f(x)>0.
(1)求證:f(x)為偶函數(shù);
(2)討論函數(shù)f(x)的單調(diào)性;
(3)求不等式f(3)+f(x-3)≤2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果一條直線(xiàn)和一個(gè)平面平行,那么這條直線(xiàn)和這個(gè)平面內(nèi)的直線(xiàn)( 。
A、相交B、平行
C、異面D、平行或異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某人5次上班途中所花的時(shí)間(單位:分鐘)分別為x,8,10,11,9.已知這組數(shù)據(jù)的平均數(shù)為10,則其方差為( 。
A、2B、4C、10D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
1-tanA
1+tanA
=
5
,則cot(
π
4
+A)
的值等于(  )
A、-
5
B、
5
C、-
5
5
D、
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=-x2-2x+3(-3≤x≤0)的值域是( 。
A、[0,3]
B、[0,4]
C、[3,4]
D、[-1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1-
1-x
x
   (x<0)
a(x2+1)     (x≥0)
在(-∞,+∞)上連續(xù)且單調(diào),則a的值為( 。
A、-1
B、1
C、
1
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a4a6=9,則log3a3+log3a7=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案