【題目】如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長為2的菱形,點E,F分別為棱DC,BC的中點,點G是棱SC靠近點C的四等分點.
求證:(1)直線平面EFG;
(2)直線平面SDB.
科目:高中數學 來源: 題型:
【題目】在多面體中,四邊形是正方形,平面平面,.
(1)求證:平面;
(2)在線段上是否存在點,使得平面與平面所成的銳二面角的大小為,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐E﹣ABCD的側棱DE與四棱錐F﹣ABCD的側棱BF都與底面ABCD垂直,,//,.
(1)證明://平面BCE.
(2)設平面ABF與平面CDF所成的二面角為θ,求.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列的前項和為,已知.
(1)令,求數列的通項公式;
(2)若數列滿足:.
①求數列的通項公式;
②是否存在正整數,使得成立?若存在,求出所有的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠ADC=60°,側面PDC是正三角形,平面PDC⊥平面ABCD,CD=2,M為PB的中點.
(1)求證:PA⊥平面CDM.
(2)求二面角D-MC-B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某超市在節(jié)日期間進行有獎促銷,凡在該超市購物滿400元的顧客,將獲得一次摸獎機會,規(guī)則如下:獎盒中放有除顏色外完全相同的1個紅球,1個黃球,1個白球和1個黑球.顧客不放回的每次摸出1個球,若摸到黑球則停止摸獎,否則就繼續(xù)摸球.規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.
(1)求1名顧客摸球2次停止摸獎的概率;
(2)記為1名顧客5次摸獎獲得的獎金數額,求隨機變量的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知,B為AC的中點,分別以AB,AC為直徑在AC的同側作半圓,M,N分別為兩半圓上的動點不含端點A,B,,且,則的最大值為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校抽取了100名學生期中考試的英語和數學成績,已知成績都不低于100分,其中英語成績的頻率分布直方圖如圖所示,成績分組區(qū)間是,,,,.
(1)根據頻率分布直方圖,估計這100名學生英語成績的平均數和中位數(同一組數據用該區(qū)間的中點值作代表);
(2)若這100名學生數學成績分數段的人數y的情況如下表所示:
分組區(qū)間 | |||||
y | 15 | 40 | 40 | m | n |
且區(qū)間內英語人數與數學人數之比為,現從數學成績在的學生中隨機選取2人,求選出的2人中恰好有1人數學成績在的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com