【題目】在直角坐標系xOy中,直線l1的方程為y= x,曲線C的參數方程為 (φ是參數,0≤φ≤π).以O為極點,x軸的非負半軸為極軸建立極坐標系.
(1)分別寫出直線l1與曲線C的極坐標方程;
(2)若直線 =0,直線l1與曲線C的交點為A,直線l1與l2的交點為B,求|AB|.
【答案】
(1)解:直線l1的方程為y= x,
可得:tanθ= = ,
∴直線l1的極坐標方程為 .
曲線C的普通方程為(x﹣1)2+y2=3,
又∵x=ρcosθ,y=ρsinθ,
所以曲線C的極坐標方程為ρ﹣2ρcosθ﹣2=0(0≤θ≤π)
(2)解:由題意,設A(ρ1,θ1),則有 ,解得:
設B(ρ2,θ2),則有 ,解得:
故得|AB|=|ρ1﹣ρ2|=5.
【解析】(1)根據tanθ= 可得直線l1極坐標.利用x=ρcosθ,y=ρsinθ帶入可得曲線C的極坐標方程.(2)由題意,設A(ρ1 , θ1),聯(lián)立方程組求解,同理,設利用直線的極坐標的幾何意義求解即可.
科目:高中數學 來源: 題型:
【題目】已知F1 , F2分別是橢圓C: =1(a>b>0)的兩個焦點,P(1, )是橢圓上一點,且 |PF1|,|F1F2|, |PF2|成等差數列.
(1)求橢圓C的標準方程;
(2)已知動直線l過點F2 , 且與橢圓C交于A、B兩點,試問x軸上是否存在定點Q,使得 =﹣ 恒成立?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,a2+b2+c2=ac+bc+ca.
(1)證明:△ABC是正三角形;
(2)如圖,點D的邊BC的延長線上,且BC=2CD,AD= ,求sin∠BAD的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b,c分別為銳角△ABC三個內角A,B,C的對邊,且(a+b)(sinA﹣sinB)=(c﹣b)sinC (Ⅰ)求∠A的大;
(Ⅱ)若f(x)= sin cos +cos2 ,求f(B)的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》是我國古代內容極為豐富的數學名著,書中有如下問題:“今有垣厚五尺,兩鼠對穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.問幾何日相逢?各穿幾何?”,翻譯成今天的話是:一只大鼠和一只小鼠分別從的墻兩側面對面打洞,已知第一天兩鼠都打了一尺長的洞,以后大鼠每天打的洞長是前一天的2倍,小鼠每天打的洞長是前一天的一半,已知墻厚五尺,問兩鼠幾天后相見?相見時各打了幾尺長的洞?設兩鼠x 天后相遇(假設兩鼠每天的速度是勻速的),則x=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AD=4,BD=8,平面PAD⊥平面ABCD,AB=2DC=4 . (Ⅰ)設M是線段PC上的一點,證明:平面BDM⊥平面PAD
(Ⅱ)求四棱錐P﹣ABCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于三次函數f(x)=ax3+bx2+cx+d(a≠0),給出定義:設f′(x)是函數y=f(x)的導數,f″是f′(x)的導數,若方程f″(x)=0有實數解x0 , 則稱點(x0 , f(x0))為函數y=f(x)的“拐點”.某同學經過探究發(fā)現:任何一個三次函數都有“拐點”;任何一個三次函數都有對稱中心,且“拐點”就是對稱中心.請你根據這一發(fā)現,求:函數 對稱中心為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com