【題目】交強險是車主必須為機動車購買的險種.若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

A1

上一個年度未發(fā)生有責任道路交通事故

下浮10%

A2

上兩個年度未發(fā)生有責任道路交通事故

下浮20%

A3

上三個及以上年度未發(fā)生有責任道路交通事故

下浮30%

A4

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

0%

A5

上一個年度發(fā)生兩次及兩次以上有責任道路交通事故

上浮10%

A6

上一個年度發(fā)生有責任道路交通死亡事故

上浮30%

某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定a=950.記X為某同學家的一輛該品牌車在第四年續(xù)保時的費用,求X的分布列與數(shù)學期望值;(數(shù)學期望值保留到個位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

【答案】解:(Ⅰ)由題意可知X的可能取值為0.9a,0.8a,0.7a,a,1.1a,1.3a. 由統(tǒng)計數(shù)據(jù)可知:
P(X=0.9a)= ,P(X=0.8a)= ,P(X=0.7a)= ,P(X=a)= ,P(X=1.1a)=
P(X=1.3a)=
所以X的分布列為:

X

0.9a

0.8a

0.7a

a

1.1a

1.3a

P

所以EX=0.9a× +0.8a× +0.7a× +a× +1.1a× +1.3a× = = ≈942.
(Ⅱ)①由統(tǒng)計數(shù)據(jù)可知任意一輛該品牌車齡已滿三年的二手車為事故車的概率為 ,三輛車中至多有一輛事故車的概率為P= + =
②設Y為該銷售商購進并銷售一輛二手車的利潤,Y的可能取值為﹣5000,10000.
所以Y的分布列為:

Y

﹣5000

10000

P

所以EY=﹣5000× +10000× =5000.
所以該銷售商一次購進100輛該品牌車齡已滿三年的二手車獲得利潤的期望值為100EY=50萬元
【解析】(Ⅰ)由題意可知X的可能取值為0.9a,0.8a,0.7a,a,1.1a,1.3a.由統(tǒng)計數(shù)據(jù)可知其概率及其分布列.(II)①由統(tǒng)計數(shù)據(jù)可知任意一輛該品牌車齡已滿三年的二手車為事故車的概率為 ,三輛車中至多有一輛事故車的概率為P= + .②設Y為該銷售商購進并銷售一輛二手車的利潤,Y的可能取值為﹣5000,10000.即可得出分布列與數(shù)學期望.
【考點精析】本題主要考查了離散型隨機變量及其分布列的相關知識點,需要掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,BC邊上的高所在直線的方程為x2y10A的平分線所在的直線方程為y0.若點B的坐標為(1,2),求點A和點C的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的頂點邊上的中線所在的直線方程為,邊上的高所在直線的方程為

)求的頂點的坐標.

若圓經(jīng)過不同的三點、,且斜率為的直線與圓相切于點,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某物流公司進行倉儲機器人升級換代期間,第一年有機器人臺,平均每臺機器人創(chuàng)收利潤萬元預測以后每年平均每臺機器人創(chuàng)收利潤都比上一年增加萬元,但該物流公司在用機器人數(shù)量每年都比上一年減少

(1)設第年平均每臺機器人創(chuàng)收利潤為萬元,在用機器人數(shù)量為臺,求,的表達式;

(2)依上述預測,第幾年該物流公司在用機器人創(chuàng)收的利潤最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x2﹣alnx﹣(a﹣2)x.
(Ⅰ)求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個零點x1 , x2(1)求滿足條件的最小正整數(shù)a的值;
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1x+2y+1=0,l2-2x+y+2=0,它們相交于點A.

(1)判斷直線l1l2是否垂直?請給出理由.

(2)求過點A且與直線l33x+y+4=0平行的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“酒后駕車”和“醉酒駕車”,其檢測標準是駕駛人員血液中的酒精含量(簡稱血酒含量,單位是毫克/100毫升),當,為酒后駕車,為醉酒駕車某市交通管理部門于某天晚上8點至11點設點進行一次攔查行動,共依法查出60名飲酒后違法駕駛機動車者,如圖為這60名駕駛員抽血檢測后所得結果畫出的頻率分布直方圖(其中的人數(shù)計入人數(shù)之內)

1求此次攔查中醉酒駕車的人數(shù);

2從違法駕車的60人中按酒后駕車和醉酒駕車利用分層抽樣抽取8人做樣本進行研究,再從抽取的8人中任取2人,求兩人中恰有1人醉酒駕車的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,上頂點為, 是斜邊長為的等腰直角三角形,若直線與橢圓交于不同兩點.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)當時,求線段的長度;

)是否存在,使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于

兩點.

(1)求線段的長度;

(2) 為坐標原點, 為拋物線上一點,若,求的值.

查看答案和解析>>

同步練習冊答案