18.函數(shù)y=(x+2)ln|x|的圖象大致為( 。
A.B.C.D.

分析 根據(jù)函數(shù)的零點(diǎn),單調(diào)性及極限思想結(jié)合選項(xiàng)使用排除法得出答案.

解答 解:令y=(x+2)ln|x|=0得x=-2或x=1或x=-1,∴該函數(shù)由三個零點(diǎn),排除B;
當(dāng)x<-2時,x+2<0,|x|>2,∴l(xiāng)n|x|>ln2>0,
∴當(dāng)x<-2時,y=(x+2)ln|x|<0,排除C,D.
故選A.

點(diǎn)評 本題考查了函數(shù)圖象的判斷,常從單調(diào)性、奇偶性、特殊點(diǎn)、定義域等幾個方面進(jìn)行判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“點(diǎn)P(tanα,cosα)在第二象限”是“角α的終邊在第四象限”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.不等式$\sqrt{\frac{{a}^{2}+^{2}}{2}}$-$\sqrt{ab}$≥λ($\frac{a+b}{2}$-$\sqrt{ab}$)對任意非負(fù)實(shí)數(shù)a.b恒成立,則正數(shù)λ的取值范圍為(  )
A.(0,1]B.(0,$\frac{\sqrt{6}}{2}$]C.(0,$\sqrt{2}$]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{cx-1}{x+1}$(c為常數(shù)),且f(1)=0.
(1)求c的值;
(2)證明函數(shù)f(x)在[0,2]上是單調(diào)遞增函數(shù);
(3)已知函數(shù)g(x)=f(ex),判斷函數(shù)g(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知定義域?yàn)镽的奇函數(shù)滿足f(x+4)=f(x),且x∈(0,2)時,f(x)=ln(x2+a),a>0,若函數(shù)f(x)在區(qū)間[-4,4]上有9個零點(diǎn),則實(shí)數(shù)a的取值范圍為(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(9,3),則此冪函數(shù)的解析式為f(x)=$\sqrt{x}$,x≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax2-2ax+b(a>0)在區(qū)間[-1,4]上有最大值10和最小值1.設(shè)g(x)=$\frac{f(x)}{x}$.
(1)求a、b的值;
(2)證明:函數(shù)g(x)在[$\sqrt$,+∞)上是增函數(shù);
(3)若不等式g(2x)-k•2x≥0在x∈[-1,1]上有解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$\frac{co{s}^{2}α-si{n}^{2}α}{sinα-cosα}$=$\frac{\sqrt{2}}{4}$,則sinαsin($\frac{π}{2}$+α)等于-$\frac{7}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=-$\frac{1}{2}$ax2+(1+a)x-lnx(a∈R).
(Ⅰ)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)a=0時,設(shè)函數(shù)g(x)=xf(x).若存在區(qū)間[m,n]⊆[$\frac{1}{2}$,+∞),使得函數(shù)g(x)在[m,n]上的值域?yàn)閇k(m+2)-2,k(n+2)-2],求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案