分析 (1)利用賦值法進行求f(1)的值;
(2)根據(jù)函數(shù)的單調(diào)性的定義判斷f(x)在(0,+∞)上的單調(diào)性,并證明.
(3)根據(jù)函數(shù)單調(diào)性的性質(zhì)解不等式即可.
解答 解:(1)令x=y=1,則有f(1)=f(1)-f(1)=0;
(2)設(shè)x1,x2∈(0,+∞),且x1<x2,
0<$\frac{{x}_{1}}{{x}_{2}}$<1,即f($\frac{{x}_{1}}{{x}_{2}}$)<0,
則f(x1)-f(x2)=f($\frac{{x}_{1}}{{x}_{2}}$)<0,
即f(x1)<f(x2),
則函數(shù)在(0,+∞)上的單調(diào)遞增.
(3)由f(x+1)-f($\frac{1}{x-1}$)<0.得f(x+1)<f($\frac{1}{x-1}$),
由(2)得函數(shù)在(0,+∞)上的單調(diào)遞增.
∴$\left\{\begin{array}{l}{x+1>0}\\{\frac{1}{x-1}>0}\\{x+1<\frac{1}{x-1}}\end{array}\right.$,即$\left\{\begin{array}{l}{x>-1}\\{x>1}\\{{x}^{2}-1<1}\end{array}\right.$,即$\left\{\begin{array}{l}{x>-1}\\{x>1}\\{-\sqrt{2}<x<\sqrt{2}}\end{array}\right.$,
解得1<x<$\sqrt{2}$,
即不等式的解集為(1,$\sqrt{2}$).
點評 本題主要考查抽象函數(shù)的應(yīng)用,根據(jù)函數(shù)的奇偶性和單調(diào)性的定義和性質(zhì)是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | 0 | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-1≤x≤2} | B. | {x|x≥2或x≤1} | C. | {x|-2≤x≤1} | D. | {x|x≥1或x≤-2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com