觀察下列等式:

可以推測:13+23+33+…+n3=________(n∈N*,用含有n的代數(shù)式表示).

解析 第二列等式的右端分別是1×1,3×3,6×6,10×10,15×15,∵1,3,6,10,15,…第nan與第n-1項an-1(n≥2)的差為:anan-1n,∴a2a1=2,a3a2=3,a4a3=4,…,anan-1n,各式相加得,

ana1+2+3+…+n,其中a1=1,∴an=1+2+3+…+n,即an,∴an2(n+1)2.

答案 n2(n+1)2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•陜西)觀察下列等式:
(1+1)=2×1
(2+1)(2+2)=22×1×3
(3+1)(3+2)(3+3)=23×1×3×5

照此規(guī)律,第n個等式可為
(n+1)(n+2)(n+3)…(n+n)=2n•1•3•5…•(2n-1)
(n+1)(n+2)(n+3)…(n+n)=2n•1•3•5…•(2n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列等式:
1
2×3
=(
1
2
-
1
3
)×
1
1
,
1
2×4
=(
1
2
-
1
4
)×
1
2
,
1
2×5
=(
1
2
-
1
5
)×
1
3
,
1
2×6
=(
1
2
-
1
6
)×
1
4
,…可推測當(dāng)n≥3,n∈N*時,
1
2×n
=
1
2
-
1
n
)×
1
n-2
1
2
-
1
n
)×
1
n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•陜西)觀察下列等式:
12=1
12-22=-3
12-22+32=6
12-22+32-42=-10

照此規(guī)律,第n個等式可為
12-22+32-…+(-1)n-1n2=
(-1)n+1
2
n(n+1)
12-22+32-…+(-1)n-1n2=
(-1)n+1
2
n(n+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列等式:
2=1×2
2+4=2×3
2+4+6=3×4
2+4+6+8=4×5

照此規(guī)律,第n個等式可為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練9練習(xí)卷(解析版) 題型:填空題

觀察下列等式:

(1+1)=2×1,

(2+1)(2+2)=22×1×3,

(3+1)(3+2)(3+3)=23×1×3×5,

……

照此規(guī)律,n個等式可為    .

 

查看答案和解析>>

同步練習(xí)冊答案