【題目】將直線2x-y+λ=0沿x軸向左平移1個單位,所得直線與圓x2+y2+2x-4y=0相切,則實(shí)數(shù)λ的值為( )
A.-3或7B.-2或8
C.0或10D.1或11
【答案】A
【解析】
試題根據(jù)直線平移的規(guī)律,由直線2x﹣y+λ=0沿x軸向左平移1個單位得到平移后直線的方程,然后因為此直線與圓相切得到圓心到直線的距離等于半徑,利用點(diǎn)到直線的距離公式列出關(guān)于λ的方程,求出方程的解即可得到λ的值.
解:把圓的方程化為標(biāo)準(zhǔn)式方程得(x+1)2+(y﹣2)2=5,圓心坐標(biāo)為(﹣1,2),半徑為,
直線2x﹣y+λ=0沿x軸向左平移1個單位后所得的直線方程為2(x+1)﹣y+λ=0,
因為該直線與圓相切,則圓心(﹣1,2)到直線的距離d==r=,
化簡得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,
解得λ=﹣3或7
故選A
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面為等腰梯形, ∥, ,垂足為, 是四棱錐的高。
(Ⅰ)證明:平面 平面;
(Ⅱ)若,60°,求四棱錐的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),的圖象兩相鄰對稱軸之間的距離是,若將的圖象向右平移個單位長度,所得圖象對應(yīng)的函數(shù)為奇函數(shù).
(1)求的解析式;
(2)求的對稱軸及單調(diào)增區(qū)間;
(3)若對任意,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為,(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;
(2)已知曲線交于兩點(diǎn),過點(diǎn)且垂直于的直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的上頂點(diǎn)為,離心率為. 拋物線截軸所得的線段長為的長半軸長.
(1)求橢圓的方程;
(2)過原點(diǎn)的直線與相交于兩點(diǎn),直線分別與相交于兩點(diǎn)
證明:以為直徑的圓經(jīng)過點(diǎn);
記和的面積分別是,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)畫出函數(shù)的圖象,并根據(jù)圖象求解下列問題;
①寫出函數(shù)的值域;
②若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項均為正數(shù)數(shù)列的前項和滿足.
(1)求數(shù)列的通項公式;;
(2)若數(shù)列滿足,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若關(guān)于的不等式在[1,+∞)上恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com