分析 由題意曲線C是平面內(nèi)到直線l1:x=-1和直線l2:y=1的距離之積等于常數(shù)k2(k>0)的點(diǎn)的軌跡.利用直接法,設(shè)動(dòng)點(diǎn)坐標(biāo)為(x,y),及可得到動(dòng)點(diǎn)的軌跡方程,然后由方程特點(diǎn)即可加以判斷.
解答 解:由題意設(shè)動(dòng)點(diǎn)坐標(biāo)為(x,y),則利用題意及點(diǎn)到直線間的距離公式的得:|x+1||y-1|=k2,
對(duì)于①,將(-1,1)代入驗(yàn)證,此方程不過(guò)此點(diǎn),所以①錯(cuò);
對(duì)于②,把方程中的x被-2-x代換,y被2-y 代換,方程不變,故此曲線關(guān)于(-1,1)對(duì)稱.所以②正確;
對(duì)于③,由題意知點(diǎn)P在曲線C上,點(diǎn)A,B分別在直線l1,l2上,則|PA|≥|x+1|,|PB|≥|y-1|
∴|PA|+|PB|≥2$\sqrt{|PA||PB|}$=2k,所以③正確;
對(duì)于④,由題意知點(diǎn)P在曲線C上,根據(jù)對(duì)稱性,
則四邊形P0P1P2P3的面積=2|x+1|×2|y-1|=4|x+1||y-1|=4k2.所以④正確.
故答案為:②③④.
點(diǎn)評(píng) 此題重點(diǎn)考查了利用直接法求出動(dòng)點(diǎn)的軌跡方程,并化簡(jiǎn),利用方程判斷曲線的對(duì)稱性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱 | |
B. | 奇函數(shù)且它的圖象關(guān)于點(diǎn)($\frac{3π}{4}$,0)對(duì)稱 | |
C. | 偶函數(shù)且它的圖象關(guān)于直線x=π對(duì)稱 | |
D. | 偶函數(shù)且它的圖象關(guān)于直線x=$\frac{3π}{4}$對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-1)∪(2,+∞) | B. | (-1,2) | C. | (1,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(0)>f(1) | B. | f(-1)<f(-3) | C. | f(-1)<f(1) | D. | f(-3)>f(-5) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com