要得到函數(shù)y=sin(2x+
π
4
)的圖象,只要將函數(shù)y=cos2x的圖象( 。
A、向左平移
π
4
單位
B、向右平移
π
4
單位
C、向右平移
π
8
單位
D、向左平移
π
8
單位
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:先將函數(shù)y=cos2x的圖象向右平移
T
4
,得到函數(shù)y=sin2x的圖象,再向右平移
π
8
單位可得函數(shù)y=sin(2x+
π
4
)的圖象,綜合兩次平移量,可得答案.
解答: 解:將函數(shù)y=cos2x的圖象向右平移
T
4
,即向右平移
π
4
個(gè)單位可得函數(shù)y=sin2x的圖象,
將函數(shù)y=sin2x的圖象向左平移
π
8
個(gè)單位可得函數(shù)y=sin(2x+
π
4
)的圖象,
綜上所述,將函數(shù)y=cos2x的圖象向右平移
π
8
個(gè)單位可得函數(shù)y=sin(2x+
π
4
)的圖象,
故選C
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是正弦型函數(shù)的圖象和性質(zhì),熟練掌握函數(shù)圖象和平移變換法則,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若xlog35=1,則5x+5-x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義函數(shù)f(x)=
4-8|x-
3
2
|,1≤x≤2
1
2
f(
x
2
),x>2
,則函數(shù)g(x)=xf(x)-6在區(qū)間[1,2n](n∈N*)內(nèi)的所有零點(diǎn)的和為( 。
A、n
B、2n
C、
3
4
(2n-1)
D、
3
2
(2n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知2sin(x+
π
2
)=1
,則cos(x+π)=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a=2,A=30°,C=135°,則邊c=( 。
A、1
B、
2
C、2
2
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ax+b,其中a,b為實(shí)數(shù),f1(x)=f(x),fn+1(x)=f(fn(x)),n=1,2,3,…若f7(x)=128x+508,則a+b=(  )
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,a=
5
,b=
3
,sinB=
2
2
,則符合條件的三角形有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列語(yǔ)句中,不是命題的是( 。
A、兩點(diǎn)之間線段最短
B、互補(bǔ)的兩個(gè)角相等
C、不是對(duì)頂角不相等
D、延長(zhǎng)線段AB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的離心率e=
2
2
,長(zhǎng)軸的左右端點(diǎn)分別為A1(-
2
,0),A2
2
,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)動(dòng)直線l:y=kx+b與曲線C有且只有一個(gè)公共點(diǎn)P,且與直線x=2相交于點(diǎn)Q.問(wèn)在x軸上是否存在定點(diǎn)N,使得以PQ為直徑的圓恒過(guò)定點(diǎn)N,若存在,求出N點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案