(15 分)已知橢圓的右焦點(diǎn)F 與拋物線y2 =" 4x" 的焦點(diǎn)重合,短軸長為2.橢圓的右準(zhǔn)線l與x軸交于E,過右焦點(diǎn)F 的直線與橢圓相交于A、B 兩點(diǎn),點(diǎn)C 在右準(zhǔn)線l上,BC//x 軸.
(1)求橢圓的標(biāo)準(zhǔn)方程,并指出其離心率;
(2)求證:線段EF被直線AC 平分.

(1)

(2)略
解:(1)由題意,可設(shè)橢圓的標(biāo)準(zhǔn)方程為……1分
的焦點(diǎn)為F(1,0)

……………………3分
所以,橢圓的標(biāo)準(zhǔn)方程為
其離心率為 ……………………5分


 ………………8分
則有………………9分

……………………10分



∴A、M、C三點(diǎn)共線,即AC過EF的中點(diǎn)M,
∴線段EF被直線AC平分!13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
(1)在平面直角坐標(biāo)系中,點(diǎn)P到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)P的軌跡為.求出的方程及其離心率的大小;
(2)已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上.若右焦點(diǎn)到直線的距離為3.求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,橢圓 的離心率為,其兩焦點(diǎn)分別為是橢圓在第一象限弧上一點(diǎn),并滿足,過作傾斜角互補(bǔ)的兩條直線分別交橢圓于兩點(diǎn).   
(1)求橢圓的方程.
(2)求點(diǎn)坐標(biāo);                               
(3)當(dāng)直線的斜率為時(shí),求直線的方程.   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的離心率為,焦點(diǎn)是,則橢圓方程為      ( ■ )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的兩個(gè)焦點(diǎn),過且與坐標(biāo)軸不平行的直線與橢圓相交于M,N兩點(diǎn),如果的周長等于8.
(I)求橢圓的方程;
(Ⅱ)若過點(diǎn)(1,0)的直線與橢圓交于不同兩點(diǎn)P、Q,試問在軸上是否存在定點(diǎn)E(,0),使恒為定值?若存在,求出E的坐標(biāo)及定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

 (本小題共12分)
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的兩焦點(diǎn)分別為F1、F2,過F1作直線交橢圓于A、B兩點(diǎn),
則△ABF2周長為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

[理]如圖,已知?jiǎng)狱c(diǎn)分別在圖中拋物線及橢圓的實(shí)線上運(yùn)動(dòng),若軸,點(diǎn)的坐標(biāo)為,則的周長的取值范圍是   ▲   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
知橢圓的離心率,過點(diǎn)的直線與原點(diǎn)的距離為.         
(1)求橢圓的方程;
(2)設(shè)為橢圓的左、右焦點(diǎn),過作直線交橢圓于、兩點(diǎn),求的內(nèi)切圓半徑的最大值.

查看答案和解析>>

同步練習(xí)冊答案