用一塊長為a,寬為b(ab)的矩形木板,在二面角為α的墻角處圍出一個直三棱柱的谷倉,試問應怎樣圍才能使谷倉的容積最大?并求出谷倉容積的最大值.

當木板的長邊著地,并且谷倉的底面是以a為底邊的等腰三角形時,谷倉的容積最大,其最大值為a2bcos.


解析:

如圖,設矩形木板的長邊AB著地,并設OA=x,OB=y,則a2=x2+y2-2xycosα≥2xy

-2xycosα=2xy(1-cosα).

∵0<απ,∴1-cosα>0,∴xy (當且僅當x=y時取“=”號),故此時谷倉的容積的最大值V1=(xysinα)b=  同理,若木板短邊著地時,谷倉的容積V的最大值V2=ab2cos,

ab,∴V1V2

從而當木板的長邊著地,并且谷倉的底面是以a為底邊的等腰三角形時,谷倉的容積最大,其最大值為a2bcos.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

用一塊長為a,寬為b(a>b)的矩形木板,在二面角為γ的墻角處,圍出一個直三棱柱的谷倉,在下面四種設計中,容積最大的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:013

用一塊長為a,寬為b(a>b)的矩形木板,在二面角為g的墻角處圍出一個直三棱柱的谷倉,在下面的設計中,容積最大的為(。

 

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:013

用一塊長為a,寬為b(a>b)的矩形木板,在二面角為g的墻角處圍出一個直三棱柱的谷倉,在下面的設計中,容積最大的為(。

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分13分)用一塊長為a,寬為b (ab)的矩形木塊,在二面角為 (0<)的墻角處圍出一個直三棱柱的儲物倉(使木板垂直于地面,兩邊與墻面貼緊,另一邊與地面貼緊),試問怎樣圍才能使儲物倉的容積最大?并求出這個最大值.

查看答案和解析>>

同步練習冊答案