(本小題14分)已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線相切,分別是橢圓的左右兩個(gè)頂點(diǎn),為橢圓上的動(dòng)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若均不重合,設(shè)直線的斜率分別為,求的值。

(1)(2)

解析試題分析:(1)由題意可得圓的方程為直線與圓相切,

所以橢圓方程為 
(2)設(shè)



的值為
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程的求法;橢圓的簡(jiǎn)單性質(zhì);圓的簡(jiǎn)單性質(zhì);點(diǎn)到直線的距離公式;斜率公式;
點(diǎn)評(píng):熟記橢圓中的關(guān)系式,并靈活應(yīng)用。注意橢圓中的關(guān)系式與雙曲線中的關(guān)系式的不同。此題屬于基礎(chǔ)題型。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

求過兩直線的交點(diǎn),且滿足下列條件的直線的方程.
(Ⅰ)和直線垂直;
(Ⅱ)在軸,軸上的截距相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
中心在原點(diǎn),長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的和為9,離心率為0.6,求橢圓的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知橢圓中心在原點(diǎn),一個(gè)焦點(diǎn)為,且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比是
(1)求橢圓的方程;(5分)
(2)是否存在斜率為的直線,使直線與橢圓有公共點(diǎn),且原點(diǎn)與直線的距離等于4;若存在,求出直線的方程,若不存在,說明理由。(7分)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓,離心率為的橢圓經(jīng)過點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的一個(gè)焦點(diǎn)且互相垂直的直線分別與橢圓交于,是否存在常數(shù),使得?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,直線與該橢圓相交于,且,,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線,焦點(diǎn)為,頂點(diǎn)為,點(diǎn)在拋物線上移動(dòng),的中點(diǎn),的中點(diǎn),求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn),的距離之和等于,設(shè)點(diǎn)的軌跡為。
(1)求曲線的方程;
(2)過點(diǎn)作兩條互相垂直的直線分別與曲線交于
①以線段為直徑的圓過能否過坐標(biāo)原點(diǎn),若能求出此時(shí)的值,若不能說明理由;
②求四邊形面積的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上. 且經(jīng)過點(diǎn),
(1)求拋物線的方程;
(2)若動(dòng)直線過點(diǎn),交拋物線兩點(diǎn),是否存在垂直于軸的直線被以為直徑的圓截得的弦長(zhǎng)為定值?若存在,求出的方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案