求過兩直線和的交點(diǎn),且滿足下列條件的直線的方程.
(Ⅰ)和直線垂直;
(Ⅱ)在軸,軸上的截距相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)
已知點(diǎn),是拋物線上相異兩點(diǎn),且滿足.
(Ⅰ)若的中垂線經(jīng)過點(diǎn),求直線的方程;
(Ⅱ)若的中垂線交軸于點(diǎn),求的面積的最大值及此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),它的準(zhǔn)線經(jīng)過雙曲線:的一個焦點(diǎn)且垂直于的兩個焦點(diǎn)所在的軸,若拋物線與雙曲線的一個交點(diǎn)是.
(1)求拋物線的方程及其焦點(diǎn)的坐標(biāo);
(2)求雙曲線的方程及其離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的左、右焦點(diǎn)分別為,離心率, .
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)過點(diǎn)的直線與該橢圓交于兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(理)已知橢圓的一個焦點(diǎn)為,點(diǎn)在橢圓上,點(diǎn)滿足(其中為坐標(biāo)原點(diǎn)),過點(diǎn)作一直線交橢圓于、兩點(diǎn) .
(1)求橢圓的方程;
(2)求面積的最大值;
(3)設(shè)點(diǎn)為點(diǎn)關(guān)于軸的對稱點(diǎn),判斷與的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,且過點(diǎn)(),
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于P,Q兩點(diǎn),且以PQ為對角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)已知點(diǎn),直線: 交軸于點(diǎn),點(diǎn)是上的動點(diǎn),過點(diǎn)垂直于的直線與線段的垂直平分線交于點(diǎn).
(Ⅰ)求點(diǎn)的軌跡的方程;(Ⅱ)若 A、B為軌跡上的兩個動點(diǎn),且 證明直線AB必過一定點(diǎn),并求出該定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分)已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線相切,分別是橢圓的左右兩個頂點(diǎn),為橢圓上的動點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若與均不重合,設(shè)直線的斜率分別為,求的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com