求過兩直線的交點(diǎn),且滿足下列條件的直線的方程.
(Ⅰ)和直線垂直;
(Ⅱ)在軸,軸上的截距相等.

(Ⅰ)(Ⅱ)

解析試題分析:解:由可得兩直線的交點(diǎn)為………………2分
(Ⅰ)直線與直線垂直
直線的斜率為
則直線的方程為              ………………6分
(Ⅱ)當(dāng)直線過原點(diǎn)時(shí),直線的方程為   ………………8分
當(dāng)直線不過原點(diǎn)時(shí),令的方程為
直線,
則直線的方程為               ………………12分
考點(diǎn):求兩直線的交點(diǎn);直線的方程;直線垂直的判定定理。
點(diǎn)評:求直線的方程是高中課程學(xué)習(xí)中最基本的要求。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)
已知點(diǎn),是拋物線上相異兩點(diǎn),且滿足
(Ⅰ)若的中垂線經(jīng)過點(diǎn),求直線的方程;
(Ⅱ)若的中垂線交軸于點(diǎn),求的面積的最大值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),它的準(zhǔn)線經(jīng)過雙曲線的一個焦點(diǎn)且垂直于的兩個焦點(diǎn)所在的軸,若拋物線與雙曲線的一個交點(diǎn)是
(1)求拋物線的方程及其焦點(diǎn)的坐標(biāo);
(2)求雙曲線的方程及其離心率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的左、右焦點(diǎn)分別為,離心率, .
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)過點(diǎn)的直線與該橢圓交于兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(理)已知橢圓的一個焦點(diǎn)為,點(diǎn)在橢圓上,點(diǎn)滿足(其中為坐標(biāo)原點(diǎn)),過點(diǎn)作一直線交橢圓于、兩點(diǎn) .
(1)求橢圓的方程;
(2)求面積的最大值;
(3)設(shè)點(diǎn)為點(diǎn)關(guān)于軸的對稱點(diǎn),判斷的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題10分)雙曲線的離心率等于4,且與橢圓有相同的焦點(diǎn),求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,且過點(diǎn)(),
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于P,Q兩點(diǎn),且以PQ為對角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分12分)已知點(diǎn),直線 交軸于點(diǎn),點(diǎn)上的動點(diǎn),過點(diǎn)垂直于的直線與線段的垂直平分線交于點(diǎn)
(Ⅰ)求點(diǎn)的軌跡的方程;(Ⅱ)若 A、B為軌跡上的兩個動點(diǎn),且 證明直線AB必過一定點(diǎn),并求出該定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題14分)已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線相切,分別是橢圓的左右兩個頂點(diǎn),為橢圓上的動點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若均不重合,設(shè)直線的斜率分別為,求的值。

查看答案和解析>>

同步練習(xí)冊答案