1.若命題P:?x,sin2x=2sinx,則¬P:?x,sin2x≠2sinx.

分析 直接利用特稱命題的否定是全稱命題,寫出結(jié)果即可.

解答 解:因?yàn)樘胤Q命題的否定是全稱命題,所以,命題P:?x,sin2x=2sinx,則¬P:?x,sin2x≠2sinx.
故答案為:?x,sin2x≠2sinx.

點(diǎn)評(píng) 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.${0.027^{\frac{1}{3}}}$×${({\frac{225}{64}})^{-\frac{1}{2}}}$÷$\sqrt{{{({-\frac{8}{125}})}^{\frac{2}{3}}}}$=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.一個(gè)口袋中,有7個(gè)紅球和8個(gè)黑球,一次從中摸出4個(gè).
(1)求恰有一個(gè)紅球的概率;
(2)在4個(gè)球均為同一顏色的條件下,求這種顏色為黑色的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.甲、乙兩位同學(xué)玩“爭(zhēng)上游”游戲,若甲有三張牌2、3、6,乙有三張牌1、4、5.
(Ⅰ)若兩人隨機(jī)各出一張牌,求甲的點(diǎn)數(shù)比乙的點(diǎn)數(shù)大的概率;
(Ⅱ)若兩人各不放回地出牌三次,規(guī)定一方至少有兩次點(diǎn)數(shù)大于另一方者獲勝; 假設(shè)乙知道甲第一次出最大的牌,問乙應(yīng)如何出牌,才能使自己獲勝.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知命題p:關(guān)于x的一元二次方程x2+2x+m=0有兩個(gè)不相等的實(shí)數(shù)根,命題q:5-2m>1,若p為假命題且q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線C以直線2x-3y+6=0與坐標(biāo)軸的交點(diǎn)為焦點(diǎn),
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)設(shè)(1)中焦點(diǎn)在x軸上的拋物線為C1,直線l過點(diǎn)P(0,2)且與拋物線C1相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系中xOy,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中圓C的方程為ρ=4cosθ,設(shè)圓C與直線l交于A、B兩點(diǎn);若點(diǎn)P的坐標(biāo)為(1,0).求:|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.一艘海監(jiān)船在某海域?qū)嵤┭埠奖O(jiān)視,由A島向正北方向行駛80海里至M處,然后沿東偏南30°方向行駛50海里至N處,再沿南偏東30°方向行駛30$\sqrt{3}$海里至B島,則A,B兩島之間距離是70海里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合A={x|x2-5x+6≥0},B={x|x>0},則A∩B( 。
A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案