18.已知某程序框圖如圖所示,則執(zhí)行該程序后輸出的結(jié)果是(  )
A.49B.50C.99D.100

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計(jì)算變量i的值,并輸出不滿足條件退出循環(huán)條件時(shí)的a的值,模擬程序的運(yùn)行,由題意利用裂項(xiàng)法解不等式,即可得解.

解答 解:模擬程序的運(yùn)行,
可得:i=$\frac{1}{1×2}$+$\frac{1}{2×3}$+…$\frac{1}{a(a+1)}$=[(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{a}$-$\frac{1}{a+1}$)]=1-$\frac{1}{a+1}$≥0.99,
解得:a≥99,
即當(dāng)a=99+1=100時(shí),不滿足條件i<0.99,退出循環(huán),輸出a的值為100.
故選:D.

點(diǎn)評 本題主要考查了循環(huán)結(jié)構(gòu),由題意利用裂項(xiàng)法解不等式是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某種多面體玩具共有12個(gè)面,在其十二個(gè)面上分別標(biāo)有數(shù)字1,2,3,…,12.若該玩具質(zhì)地均勻,則拋擲該玩具后,任何一個(gè)數(shù)字所在的面朝上的概率均相等.拋擲該玩具一次,記事件A=“向上的面標(biāo)記的數(shù)字是完全平方數(shù)(記能寫出整數(shù)的平方形式的數(shù),如9=32,9是完全平方數(shù))”
(1)甲、乙二人利用該玩具進(jìn)行游戲,并規(guī)定:
①甲拋擲一次,若事件A發(fā)生,則向上一面的點(diǎn)數(shù)的6倍為甲的得分;若事件A不發(fā)生,則甲得0分;②乙拋擲一次,將向上的一面對應(yīng)的數(shù)字作為乙的得分;
(。 甲、乙二人各拋擲該玩具一次,求二人得分的期望;
(ⅱ)甲、乙二人各拋擲該玩具一次,求甲的得分不低于乙的概率;
(2)拋擲該玩具一次,記事件B=“向上一面的點(diǎn)數(shù)不超過k(1≤k≤12)”,若事件A與B相互獨(dú)立,試求出所有的整數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$的左、右焦點(diǎn)分別為F1、F2,過F2作x軸的垂線交橢圓于點(diǎn)P,過P與原點(diǎn)O的直線交橢圓于另一點(diǎn)Q,則△F1PQ的周長為( 。
A.4B.8C.$4+\sqrt{13}$D.$2+\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知p(x):x2-5x+6<0,則使p(x)為真命題的x取值范圍為(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知i是虛數(shù)單位,若復(fù)數(shù)z=3-4i,則計(jì)算$\frac{\overline{z}}{i}$的結(jié)果為( 。
A.-4-3iB.4-3iC.4+3iD.-4+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,焦距為8,左頂點(diǎn)為A,在y軸上有一點(diǎn)B(0,b),滿足$\overrightarrow{BA}$•$\overrightarrow{BF}$=2a,則該雙曲線的離心率的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知△ABC的三個(gè)內(nèi)角A,B,C依次成等差數(shù)列,BC邊上的中線AD=$\sqrt{7}$,AB=2,則S△ABC=( 。
A.3B.2$\sqrt{3}$C.3$\sqrt{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$則$\frac{y}{x}$的最大值為( 。
A.1B.3C.$\frac{3}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在一張足夠大的紙板上截取一個(gè)面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個(gè)角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個(gè)無蓋的長方體紙盒(如圖).設(shè)小正方形邊長為x厘米,矩形紙板的兩邊AB,BC的長分別為a厘米和b厘米,其中a≥b.
(1)當(dāng)a=90時(shí),求紙盒側(cè)面積的最大值;
(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.

查看答案和解析>>

同步練習(xí)冊答案