10.一支田徑隊員有男運動員56人,女運動員42人,若采用分層抽樣的方法在全體運動員中抽出28人進行體質(zhì)測試,則抽到進行體質(zhì)測試的男運動員的人數(shù)為16.

分析 先求出抽樣比,再利用分層抽樣性質(zhì)能求出結(jié)果.

解答 解:一支田徑隊員有男運動員56人,女運動員42人,
采用分層抽樣的方法在全體運動員中抽出28人進行體質(zhì)測試,
則抽到進行體質(zhì)測試的男運動員的人數(shù)為:
$28×\frac{56}{56+42}$=16.
故答案為:16.

點評 本題考查分層抽樣的應用,是基礎(chǔ)題,解題時要認真審題,注意分層抽樣的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,則$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow$)=( 。
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.若函數(shù)f(x)=sin(2x+φ)+1(-π<φ<0)圖象的一個對稱中心坐標為$(\frac{π}{8},1)$.
(Ⅰ)求φ的值;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在平行四邊形ABCD中,O為對角線AC與BD的交點,則$\overrightarrow{BC}$-$\overrightarrow{AB}$=( 。
A.2$\overrightarrow{OA}$B.2$\overrightarrow{OB}$C.2$\overrightarrow{OC}$D.2$\overrightarrow{OD}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知向量$\overrightarrow{a}$=(cosωx,-cosωx),$\overrightarrow$=($\sqrt{3}$sinωx,cosωx),其中ω<0為常數(shù),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,若函數(shù)f(x)的最小正周期為π.
(1)求ω的值;
(2)若當x∈[0,$\frac{π}{2}$]時,不等式|k+f(x)|<4恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.閱讀如圖所示的程序框圖,若輸出的數(shù)據(jù)為58,則判斷框中應填入的條件為k≤4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.如圖是一個算法的流程圖,則輸出的S為10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.將函數(shù)y=sinxcosx的圖象向左平移$\frac{π}{4}$個單位,再向上平移$\frac{1}{2}$個單位,所得圖象的函數(shù)解析式是( 。
A.y=cos2xB.y=sin2xC.$y=\frac{1}{2}sin(2x+\frac{π}{4})+\frac{1}{2}$D.$y=\frac{1}{2}cos2x$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設(shè)a為常數(shù),已知函數(shù)f(x)=x2-alnx在區(qū)間[1,2]上是增函數(shù),$g(x)=x-a\sqrt{x}$在區(qū)間[0,1]上是減函數(shù).設(shè)P為函數(shù)g(x)圖象上任意一點,則點P到直線l:x-2y-6=0距離的最小值為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

同步練習冊答案