【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,

1)求證:平面;

2)在線段上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說明理由.

【答案】1)證明見解析 2)存在,.

【解析】

1)由面面垂直的性質(zhì)證明,再由已知求解三角形證明,由線面垂直的判定可得平面;
2)取中點(diǎn),連接,連接于點(diǎn),可證平面,此時(shí)得到

1)因?yàn)樗倪呅?/span>為正方形,

所以.平面平面,

平面平面

所以平面.所以.

中點(diǎn),連接.,,,

可得四邊形為正方形.

所以.所以.所以.

因?yàn)?/span>,所以平面.

2)存在,當(dāng)的中點(diǎn)時(shí),平面,此時(shí).

證明如下:

中點(diǎn),連接,連接于點(diǎn),由于四邊形為正方形,

所以的中點(diǎn),同時(shí)也是的中點(diǎn).

因?yàn)?/span>,又四邊形為正方形,

所以

連接,所以四邊形為平行四邊形.

所以.又因?yàn)?/span>平面平面,

所以平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列的前項(xiàng)和.

(1)求的通項(xiàng)公式;

(2)若不等式對(duì)所有的正整數(shù)都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在實(shí)數(shù)集中,定義兩個(gè)實(shí)數(shù)、的運(yùn)算法則△如下:若,則,若,則.

1)請(qǐng)分別計(jì)算的值;

2)對(duì)于實(shí)數(shù),判斷是否恒成立,并說明理由;

3)求函數(shù)的解析式,其中,并求函數(shù)的最值.(符號(hào)表示相乘)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

存在實(shí)數(shù)x,使得sin x+cos x=2

②函數(shù)y=cos是奇函數(shù);

③若角α,β是第一象限角,且αβ,則tan α<tan β;

④函數(shù)y=sin的圖象關(guān)于點(diǎn)(,0)成中心對(duì)稱.

⑤直線x=是函數(shù)y=sin圖象的一條對(duì)稱軸;

其中正確的命題是(   ).

A.②④B.①③C.①④D.②⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】旅行社為某旅行團(tuán)包飛機(jī)去旅游,其中旅行社的包機(jī)費(fèi)為15000元.旅游團(tuán)中的每人的飛機(jī)票按以下方式與旅行社結(jié)算:若旅游團(tuán)的人數(shù)不超過35人時(shí),飛機(jī)票每張收費(fèi)800元;若旅游團(tuán)的人數(shù)多于35人,則給予優(yōu)惠,每多1人,機(jī)票費(fèi)每張減少10元,但旅游團(tuán)的人數(shù)最多有60人.設(shè)旅行團(tuán)的人數(shù)為人,飛機(jī)票價(jià)格為元,旅行社的利潤(rùn)為元.

(1)寫出飛機(jī)票價(jià)格元與旅行團(tuán)人數(shù)之間的函數(shù)關(guān)系式;

(2)當(dāng)旅游團(tuán)的人數(shù)為多少時(shí),旅行社可獲得最大利潤(rùn)?求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)工廠生產(chǎn)某種產(chǎn)品每年需要固定投資100萬元,此外每生產(chǎn)1件該產(chǎn)品還需要增加投資1萬元,年產(chǎn)量為)件.當(dāng)時(shí),年銷售總收人為()萬元;當(dāng)時(shí),年銷售總收人為萬元.記該工廠生產(chǎn)并銷售這種產(chǎn)品所得的年利潤(rùn)為萬元.(年利潤(rùn)=年銷售總收入一年總投資)

(1)(萬元)()的函數(shù)關(guān)系式;

(2)當(dāng)該工廠的年產(chǎn)量為多少件時(shí),所得年利潤(rùn)最大?最大年利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知acosCccosA2bcosA

1)求角A的值;

2)求sinBsinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓學(xué)生更多的了解數(shù)學(xué)史知識(shí),某中學(xué)高二年級(jí)舉辦了一次追尋先哲的足跡,傾聽數(shù)學(xué)的聲音的數(shù)學(xué)史知識(shí)競(jìng)賽活動(dòng),共有800名學(xué)生參加了這次競(jìng)賽,為了解本次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果見下表.請(qǐng)你根據(jù)頻率分布表解答下列問題:

序號(hào)

分組(分?jǐn)?shù))

組中值

頻數(shù)(人數(shù))

頻率

1

65

0.12

2

75

20

3

85

0.24

4

95

合計(jì)

50

1

1)填充頻率分布表中的空格;

2)規(guī)定成績(jī)不低于85分的同學(xué)能獲獎(jiǎng),請(qǐng)估計(jì)在參加的800名學(xué)生中大概有多少名同學(xué)獲獎(jiǎng)?

3)在上述統(tǒng)計(jì)數(shù)據(jù)的分析中有一項(xiàng)計(jì)算見算法流程圖,求輸出的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)求的定義域;并證明是定義域上的奇函數(shù);

2)判斷在定義域上的單調(diào)性(無需證明);

3)求使不等式解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案