函數(shù)f(x)=x3-3x+2 在閉區(qū)間[0,3]上的最大值、最小值分別是( )
A.20和2
B.20和-1
C.20和0
D.19和-1
【答案】分析:先求導(dǎo)函數(shù),確定函數(shù)在閉區(qū)間[0,3]上的單調(diào)性,進而計算極值點及端點的函數(shù)值可確定函數(shù)的最值.
解答:解:由題意,f′(x)=3x2-3x=3(x-1)(x+1)
∴函數(shù)f(x)在[0,1]上,f′(x)<0,函數(shù)為單調(diào)減函數(shù),
在[1,3]上,f′(x)>0,函數(shù)為單調(diào)增函數(shù)
∴x=1時,函數(shù)取得最小值為0
又f(0)=2,f(3)=20
∴x=3時,函數(shù)取得最大值為20
故選C.
點評:本題以函數(shù)為載體,考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,解題的關(guān)鍵是利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),函數(shù)f(x)在R上有三個零點.
(1)求b的值;
(2)若1是其中一個零點,求f(2)的取值范圍;
(3)若a=1,g(x)=f′(x)+3x2+lnx,試問過點(2,5)可作多少條直線與曲線y=g(x)相切?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•東城區(qū)一模)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線l不過第四象限且斜率為3,又坐標原點到切線l的距離為
10
10
,若x=
2
3
時,y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波模擬)已知函數(shù)f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0時,試求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(2)若a=0,且曲線y=f(x)在點A、B(A、B不重合)處切線的交點位于直線x=2上,證明:A、B 兩點的橫坐標之和小于4;
(3)如果對于一切x1、x2、x3∈[0,1],總存在以f(x1)、f(x2)、f(x3)為三邊長的三角形,試求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-3ax+b(a≠0),已知曲線y=f(x)在點(2,f(x))處在直線y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間與極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=x3+ax2-x+1的極值情況,4位同學(xué)有下列說法:甲:該函數(shù)必有2個極值;乙:該函數(shù)的極大值必大于1;丙:該函數(shù)的極小值必小于1;丁:方程f(x)=0一定有三個不等的實數(shù)根. 這四種說法中,正確的個數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊答案