13.關(guān)于x的方程|x2-4x+3|-a=x至少有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是[-1,-$\frac{3}{4}$].

分析 根據(jù)方程與函數(shù)之間的關(guān)系,利用參數(shù)分離法進(jìn)行轉(zhuǎn)化,利用數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:由|x2-4x+3|-a=x得|x2-4x+3|-x=a,
設(shè)f(x)=|x2-4x+3|-x,
由x2-4x+3≥0得x≥3或x≤1時(shí),f(x)=x2-4x+3-x=x2-5x+3,
當(dāng)1<x<3時(shí),f(x)=-(x2-4x+3)-x=-x2+3x-3=-(x-$\frac{3}{2}$)2-$\frac{3}{4}$,
作出函數(shù)f(x)的圖象如圖:
當(dāng)x=1時(shí),y=-1,
則要使方程|x2-4x+3|-a=x至少有三個(gè)不相等的實(shí)數(shù)根,
則滿足a∈[-1,-$\frac{3}{4}$],
故答案為:[-1,-$\frac{3}{4}$].

點(diǎn)評(píng) 本題主要考查函數(shù)與方程的應(yīng)用,利用參數(shù)分離法,利用構(gòu)造函數(shù)法,結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.寫出如圖陰影部分的角的集合為{α|-150°+k•360°≤α≤150°+k•360°,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{\frac{1}{3},x≤-1}}\\{x+\frac{2}{x}-7,x>-1}\end{array}\right.$則f[f(-8)]=(  )
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若點(diǎn)P(cosα,sinα)在直線y=-2x上,則$cos(2α+\frac{π}{2})$的值等于( 。
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知x,y是實(shí)數(shù),則“$\left\{\begin{array}{l}{x>1}\\{y>1}\end{array}\right.$”是$\left\{\begin{array}{l}{x+y>2}\\{xy>1}\end{array}\right.$的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△AOB中,$\overrightarrow{OA}=(2cosα,2sinα),\overrightarrow{OB}=(5sinβ,5cosβ),\overrightarrow{OA}•\overrightarrow{OB}=-5$,則△AOB的面積為(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{5\sqrt{3}}}{2}$D.$5\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.?dāng)?shù)列{an}前數(shù)列n項(xiàng)和Sn,已知${S_n}+{a_n}+n=0(n∈{N^*})$恒成立.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:$\frac{1}{{2{a_1}{a_2}}}+\frac{1}{{{2^2}{a_2}{a_3}}}+…+\frac{1}{{{2^n}{a_n}{a_{n+1}}}}<2$.
(Ⅲ)若關(guān)于x的不等式${x^2}+\frac{1}{2}x-1≥{a_n}$對(duì)任意n∈N*在x∈(-∞,λ]上恒成立,求實(shí)常數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.化簡(jiǎn)與求值:(不用計(jì)算器)
(1)cos18°cos42°-sin18°sin42°;(2)cos80°sin70°+cos10°sin20°
(3)cos20°cos(α-20°)-cos70°sin(α-20°)(4)cos215°-cos275°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知正數(shù)數(shù)列{xn}滿足x1=$\frac{1}{2}$,xn+1=$\frac{1}{1+{x}_{n}}$,n∈N*
(1)求x2,x4,x6
(2)猜想數(shù)列{x2n}的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案