2.在等比數(shù)列{an}中,若a6=6,a9=9,則a3為( 。
A.2B.$\frac{3}{2}$C.$\frac{16}{9}$D.4

分析 由已知結(jié)合等比數(shù)列的性質(zhì)求解.

解答 解:在等比數(shù)列{an}中,由a6=6,a9=9,
得${a}_{3}=\frac{{{a}_{6}}^{2}}{{a}_{9}}=\frac{36}{9}=4$.
故選:D.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的性質(zhì),是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.證明:函數(shù)y=$\sqrt{2x-{x}^{2}}$滿足關(guān)系式y(tǒng)3y″+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖程序框圖所示的算法來自于《九章算術(shù)》,若輸入a的值為16,b的值為24,則執(zhí)行該程序框圖的結(jié)果為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若圓錐底面半徑為2,高為$\sqrt{5}$,則其側(cè)面積為6π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的離心率為$\frac{\sqrt{3}}{2}$,且點(diǎn)(-$\sqrt{3}$,$\frac{1}{2}$)在橢圓C上.
(1)求橢圓C的方程;
(2)直線l與橢圓C交于點(diǎn)P,Q,線段PQ的中點(diǎn)為H,O為坐標(biāo)原點(diǎn)且OH=1,求△POQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知F1、F2分別為橢圓$\frac{{x}^{2}}{2}$+y2=1的左右兩個(gè)焦點(diǎn),過F1作傾斜角為$\frac{π}{4}$的弦AB,則△F2AB的面積為(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{4\sqrt{2}}{3}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)x,y∈[0,1],則滿足y>$\sqrt{1-{x}^{2}}$的概率為(  )
A.1-$\frac{π}{4}$B.$\frac{1}{2}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.設(shè)函數(shù)g(x)=2x3-3x2+$\frac{3}{2}$,則g($\frac{1}{100}$)+g($\frac{2}{100}$)+…+g($\frac{99}{100}$)=( 。
A.100B.99C.50D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖是一個(gè)幾何體的三視圖,則該幾何體的體積為( 。
A.B.18πC.27πD.54π

查看答案和解析>>

同步練習(xí)冊(cè)答案