解答:
解:(1)函數(shù)f(x)=
x
3-x
2-3x+3.
∴f′(x)=x
2-2x-3,f(1)=-
.
∴f′(1)=-4,
∴曲線y=f(x)在點(1,f(1))處的切線方程為:y+
=-4(x-1),化為12x+3y-10=0.
(2)令f′(x)>0,解得x>3或x<-1;令f′(x)<0,解得-1<x<3.
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-1),(3,+∞);單調(diào)遞減區(qū)間為(-1,3).
(3)當t+4≤-1,即t≤-5時,∵函數(shù)f(x)在區(qū)間(-∞,-1]單調(diào)遞增,∴當x=t時,f(x)取得最小值,f(t)=
t3-t2-3t+3.
當t≥3,函數(shù)f(x)在區(qū)間[3,+∞]單調(diào)遞增,∴當x=t時,f(x)取得最小值,f(t)=
t3-t2-3t+3.
當-5<t<-3時,-1<t+4<1.∵函數(shù)f(x)在區(qū)間[t,-1]單調(diào)遞增,在[-1,t+4]上單調(diào)遞減,
而f(t+4)-f(t)=
(t+4)3-(t+4)2-3(t+4)+3-
t3+t
2+3t-3=
4(t+1)2->0.
∴函數(shù)f(x)的最小值為{f(t),f(t+4)}
min=f(t).
當-3≤t≤3時,1<t+4<7.∵函數(shù)f(x)在區(qū)間[t,3)單調(diào)遞減,在(3,t+4]單調(diào)遞增,
∴函數(shù)f(x)的最小值為f(3)=9-9-9+3=-6.
綜上可得:當t+4≤-1,即t≤-5時,f(x)的最小值為f(t)=
t3-t2-3t+3.
當t≥3,f(x)的最小值為f(t)=
t3-t2-3t+3.
當-5<t<-3時,-1<t+4<1,函數(shù)f(x)的最小值為f(t).
當-3≤t≤3時,1<t+4<7,函數(shù)f(x)的最小值為f(3)=-6.