3.若實(shí)數(shù)a滿足x+lgx=2,實(shí)數(shù)b滿足x+10x=2,函數(shù)f(x)=$\left\{\begin{array}{l}{2ln(x+2)-\frac{a+b}{2},x≤0}\\{{x}^{2}-2,x>0}\end{array}\right.$,則關(guān)于x的方程f(x)=x解的個(gè)數(shù)為( 。
A.1B.2C.3D.4

分析 根據(jù)y=lgx與y=10x的對(duì)稱關(guān)系得a+b=2,做出y=f(x)和y=x的函數(shù)圖象,根據(jù)圖象判斷方程解的個(gè)數(shù).

解答 解:由題意可得:2-a=lga,2-b=10b,
做出y=lgx,y=2-x,y=10x的函數(shù)圖象如圖所示:

∵y=lgx與y=10x互為反函數(shù),
∴y=lgx與y=10x的函數(shù)圖象關(guān)于直線y=x對(duì)稱,
又直線y=2-x與直線y=x垂直,交點(diǎn)坐標(biāo)為(1,1),
∴a+b=2,
∴f(x)=$\left\{\begin{array}{l}{2ln(x+2)-1,x≤0}\\{{x}^{2}-2,x>0}\end{array}\right.$,
做出y=f(x)與y=x的函數(shù)圖象如圖所示:

由圖象可知f(x)的圖象與直線y=x有兩個(gè)交點(diǎn),
∴f(x)=x有兩個(gè)解.
故選B.

點(diǎn)評(píng) 本題考查了方程的根與函數(shù)的零點(diǎn)的關(guān)系,利用反函數(shù)的性質(zhì)求出a+b=2,以及作出對(duì)應(yīng)函數(shù)的圖象,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,直線y=x-2$\sqrt{2}$與圓x2+y2=2an+2交于An,Bn(n∈N*)兩點(diǎn),且$S{\;}_n=\frac{1}{4}{|{{A_n}{B_n}}|^2}$.若a1+2a2+3a3+…+nan<λan2+2對(duì)任意n∈N*恒成立,則實(shí)數(shù)λ的取值范圍是( 。
A.(0,+∞)B.$(\frac{1}{2},+∞)$C.[0,+∞)D.$[\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某中學(xué)是走讀中學(xué),為了讓學(xué)生更有效率利用下午放學(xué)后的時(shí)間,學(xué)校在本學(xué)期第一次月考后設(shè)立了多間自習(xí)室,以便讓學(xué)生在自習(xí)室自主學(xué)習(xí)、完成作業(yè),同時(shí)每天派老師輪流值班.在本學(xué)期第二次月考后,高一某班數(shù)學(xué)老師統(tǒng)計(jì)了兩次考試該班數(shù)學(xué)成績優(yōu)良人數(shù)和非優(yōu)良人數(shù),得到如下2×2列聯(lián)表:
非優(yōu)良優(yōu)良總計(jì)
未設(shè)立自習(xí)室251540
設(shè)立自習(xí)室103040
總計(jì)354580
(1)能否在在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為設(shè)立自習(xí)室對(duì)提高學(xué)生成績有效;
(2)從該班第一次月考的數(shù)學(xué)優(yōu)良成績中和第二次月考的數(shù)學(xué)非優(yōu)良成績中,按分層抽樣隨機(jī)抽取5個(gè)成績,再從這5個(gè)成績中隨機(jī)抽取2個(gè),求這2個(gè)成績來自同一次月考的概率.
下面的臨界值表供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.2017年春晚分會(huì)場(chǎng)之一是涼山西昌,電視播出后,通過網(wǎng)絡(luò)對(duì)涼山分會(huì)場(chǎng)的表演進(jìn)行了調(diào)查.調(diào)查分三類人群進(jìn)行,參加了網(wǎng)絡(luò)調(diào)查的觀眾們的看法情況如下:
 觀眾對(duì)涼山分會(huì)場(chǎng)表演的看法 非常好 好
 中國人且非四川(人數(shù)比例) $\frac{1}{2}$ $\frac{1}{2}$
 四川人(非涼山)(人數(shù)比例)$\frac{2}{3}$  $\frac{1}{3}$
涼山人(人數(shù)比例) $\frac{3}{4}$ $\frac{1}{4}$
(1)從這三類人群中各選一個(gè)人,求恰好有2人認(rèn)為“非常好”的概率(用比例作為相應(yīng)概率);
(2)若在四川人(非涼山)群中按所持態(tài)度分層抽樣,抽取9人,在這9人中任意選取3人,認(rèn)為“非常好”的人數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.命題“?x>0,lnx≤x-1”的否定是( 。
A.?x0>0,lnx0≤x0-1B.?x0>0,lnx0>x0-1C.?x0<0,lnx0<x0-1D.?x0>0,lnx0≥x0-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.圓x2+y2+2x-6y+1=0關(guān)于直線ax-by+3=0(a>0,b>0)對(duì)稱,則$\frac{1}{a}$$+\frac{3}$的最小值是( 。
A.2$\sqrt{3}$B.$\frac{20}{3}$C.4D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)復(fù)數(shù)z滿足iz=1+2i,則z的共軛復(fù)數(shù)的虛部為( 。
A.iB.-iC.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合M={1,3,4},N={x|x2-4x+3=0},則M∩N=( 。
A.{3,4}B.{1,4}C.{1,3}D.{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將函數(shù)y=cos(x-$\frac{π}{3}$)的圖象上各點(diǎn)橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平移$\frac{π}{6}$個(gè)單位,所得函數(shù)圖象的一條對(duì)稱軸是( 。
A.x=$\frac{π}{4}$B.x=$\frac{π}{6}$C.x=πD.x=$\frac{π}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案