“x2-2x<0”是“0<x<4”的( )
A.充要條件
B.充分而不必要條件
C.必要而不充分條件
D.既不充分也不必要條件
【答案】分析:因為“x2-x>0”可以求出x的范圍,再根據(jù)充分必要條件的定義進(jìn)行求解;
解答:解:∵x2-2x<0?0<x<2,
若0<x<2可得0<x<4,反之不成立.
∴“x2-2x<0”是“0<x<4”的充分非必要條件,
故選B.
點評:此題主要考查一元二次不等式的解法,以及充分必要條件的定義,是一道基礎(chǔ)題;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

9、由命題“存在x∈R,使x2+2x+m≤0”是假命題,求得m的取值范圍是(a,+∞),則實數(shù)a的值是
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中,正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•資陽二模)“x2-2x<0”是“|x|<2”成立的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中,正確的序號是

①.命題“若am2<bm2,則a<b”的逆命題是真命題
②.已知x∈R,則“x2-2x-3=0”是“x=3”的必要不充分條件
③.命題“p∨q”為真命題,則“命題p”和“命題q”均為真命題
④已知x∈R,則“x>1”是“x>2”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•德陽三模)若x∈R,則“x2-2x+1≤0”是“x>0”的( 。

查看答案和解析>>

同步練習(xí)冊答案