【題目】為促進(jìn)農(nóng)業(yè)發(fā)展,加快農(nóng)村建設(shè),某地政府扶持興建了一批“超級(jí)蔬菜大棚”,為了解大棚的面積與年利潤之間的關(guān)系,隨機(jī)抽取了其中的7個(gè)大棚,并對當(dāng)年的利潤進(jìn)行統(tǒng)計(jì)整理后得到了如下數(shù)據(jù)對比表:

由所給數(shù)據(jù)的散點(diǎn)圖可以看出,各樣本點(diǎn)都分布在一條直線附近,并且有很強(qiáng)的線性相關(guān)關(guān)系.

(1)求關(guān)于的線性回歸方程;(結(jié)果保留三位小數(shù));

(2)小明家的“超級(jí)蔬菜大棚”面積為8.0畝,估計(jì)小明家的大棚當(dāng)年的利潤為多少;

(3)另外調(diào)查了近5年的不同蔬菜畝平均利潤(單位:萬元),其中無絲豆為:1.5,1.7,2.1,2.2,2.5;彩椒為:1.8,1.9,1.9,2.2,2.2,請分析種植哪種蔬菜比較好?

參考數(shù)據(jù):,.

參考公式:,.

【答案】(1).

(2)11.442萬元.

(3)種植彩椒比較好.

【解析】分析:(1)先求均值,再代公式求,根據(jù),(2)即求自變量為8.0時(shí)對應(yīng)函數(shù)值,(3)分別求平均利潤(一樣),再分別求方差,根據(jù)方差越小越穩(wěn)定,進(jìn)行選擇.

詳解: (1),.

,

那么回歸方程為:.

(2)將代入方程得,即小明家的“超級(jí)大棚”當(dāng)年的利潤大約為11.442萬元.

(3)近5年來,無絲豆畝平均利潤的平均數(shù)為,

方差.

彩椒畝平均利潤的平均數(shù)為.

方差為.

因?yàn)?/span>,∴種植彩椒比較好.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)圓M與定圓C:x2+y2+4x=0相外切,且與直線l:x-2=0相切,則動(dòng)圓M的圓心的軌跡方程為(  )

A. y2-12x+12=0 B. y2+12x-12=0

C. y2+8x=0 D. y2-8x=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),以O為圓心的圓與直線相切.

(1)求圓O的方程.

(2)直線與圓O交于AB兩點(diǎn),在圓O上是否存在一點(diǎn)M,使得四邊形為菱形?若存在,求出此時(shí)直線l的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ln(x+m)
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間中有如下命題,其中正確的是(

A. 若直線ab共面,直線bc共面,則直線ac共面;

B. 若平面α內(nèi)的任意直線m∥平面β,則平面α∥平面β

C. 若直線a與平面不垂直,則直線a與平面內(nèi)的所有直線都不垂直;

D. 若點(diǎn)P到三角形三條邊的距離相等,則點(diǎn)P在該三角形所在平面內(nèi)的射影是該三角形的內(nèi)心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且經(jīng)過點(diǎn).

(1)求橢圓方程;

(2)過點(diǎn)的直線與橢圓交于兩個(gè)不同的點(diǎn),求線段的垂直平分線在軸截距的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系,已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線交于兩點(diǎn).

(1)求直線l的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn)的極坐標(biāo)為,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD都是等邊三角形.

(1)證明:PB⊥CD;
(2)求二面角A﹣PD﹣C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)如圖,在四棱錐PABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BADPAAD=2,ABBC=1.

(1)求點(diǎn)D到平面PBC的距離;

(2)設(shè)Q是線段BP上的動(dòng)點(diǎn),當(dāng)直線CQDP所成的角最小時(shí),求二面角B-CQ-D的余弦值.

查看答案和解析>>

同步練習(xí)冊答案