A. | [-$\frac{π}{6}$+2kπ,$\frac{π}{3}$+2kπ](k∈Z) | B. | $[\frac{π}{3}+2kπ,\frac{5π}{6}+2kπ](k∈Z)$ | ||
C. | [-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z) | D. | $[\frac{π}{3}+kπ,\frac{5π}{6}+kπ](k∈Z)$ |
分析 本題即求y=sin(2x-$\frac{π}{6}$) 的單調(diào)遞減區(qū)間,再利用正弦函數(shù)的單調(diào)性求得結(jié)果.
解答 解:函數(shù)y=sin(-2x+$\frac{π}{6}$)=-sin(2x-$\frac{π}{6}$) 的單調(diào)遞增區(qū)間,即y=sin(2x-$\frac{π}{6}$) 的單調(diào)遞減區(qū)間.
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,求得kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,
故函數(shù)y=sin(-2x+$\frac{π}{6}$)=-sin(2x-$\frac{π}{6}$) 的單調(diào)遞增區(qū)間為[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$],k∈Z,
故選:D.
點評 本題主要考查正弦函數(shù)的單調(diào)性,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | 1 | C. | $\frac{5}{4}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,3) | B. | (-∞,-3)∪(3,+∞) | C. | $(-∞,\frac{1}{27})∪(27,+∞)$ | D. | $(\frac{1}{27},27)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com