在直角坐標(biāo)系xOy中,曲線C1的點均在C2:(x-5)2+y2=9外,且對C1上任意一點M,M到直線x=﹣2的距離等于該點與圓C2上點的距離的最小值.

(Ⅰ)求曲線C1的方程;

(1-4班做)(Ⅱ)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點,過P作圓C2的兩條切線,分別與曲線C1相交于點A,B和C,D.證明:當(dāng)P在直線x=﹣4上運動時,四點A,B,C,D的縱坐標(biāo)之積為定值.

 

(5-7班做)(Ⅱ)設(shè)P(-4,1)為圓C2外一點,過P作圓C2的兩條切線,分別與曲線C1相交于點A,B和C,D.證明:四點A,B,C,D的縱坐標(biāo)之積為定值.

 

【答案】

(Ⅰ)曲線的方程為.

(Ⅱ)當(dāng)P在直線上運動時,四點A,B,C,D的縱坐標(biāo)之積為定值6400.

 

【解析】本事試題主要是考查了解析幾何中運用坐標(biāo)法解決幾何問題的實質(zhì)。

(1)由題設(shè)知,曲線上任意一點M到圓心的距離等于它到直線的距離,因此,曲線是以為焦點,直線為準(zhǔn)線的拋物線,故其方程為

(2)因為P的坐標(biāo)為,則過P且與圓

相切得直線的斜率存在且不為0,每條切線都與拋物線有兩個交點,切線方程為,

設(shè)過P所作的兩條切線的斜率分別為,則是方程①的兩個實根,故

同理得到,進而證明。

(2)當(dāng)點P在直線上運動時,P的坐標(biāo)為,又,則過P且與圓

相切得直線的斜率存在且不為0,每條切線都與拋物線有兩個交點,切線方程為

設(shè)過P所作的兩條切線的斜率分別為,則是方程①的兩個實根,故

同理得到,進而證明。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2.F2也是拋物線C2:y2=4x的焦點,點M為C1與C2在第一象限的交點,且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的點N滿足
MN
=
MF1
+
MF2
,直線l∥MN,且與C1交于A,B兩點,若
OA
OB
=0
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知點P(2cosx+1,2cos2x+2)和點Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在直角坐標(biāo)系xOy中,射線OA在第一象限,且與x軸的正半軸成定角60°,動點P在射線OA上運動,動點Q在y軸的正半軸上運動,△POQ的面積為2
3

(1)求線段PQ中點M的軌跡C的方程;
(2)R1,R2是曲線C上的動點,R1,R2到y(tǒng)軸的距離之和為1,設(shè)u為R1,R2到x軸的距離之積.問:是否存在最大的常數(shù)m,使u≥m恒成立?若存在,求出這個m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為
x=tcosθ
y=1+tsinθ
(t
為參數(shù))
(I)求圓M的圓心的軌跡C的參數(shù)方程,并說明它表示什么曲線;
(II)求直線l被軌跡C截得的最大弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個焦分別為F1,F(xiàn)2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關(guān)于直線l 的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案