6.已知△ABC的頂點(diǎn)A(-3,0)和頂點(diǎn)B(3,0),頂點(diǎn)C在橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上,則$\frac{5sinC}{sinA+sinB}$=3.

分析 由題意可知:頂點(diǎn)A,B為橢圓的兩個(gè)焦點(diǎn),利用正弦定理及橢圓的定義,求得a和b的關(guān)系,即可求得$\frac{5sinC}{sinA+sinB}$=3.

解答 解:由橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,長軸長2a=10,短軸長2b=8,焦距2c=6,
則頂點(diǎn)A,B為橢圓的兩個(gè)焦點(diǎn),
三角形ABC中,a=丨BC丨,b=丨AC丨,c=丨AB丨=6,a+b=丨BC丨+丨AC丨=10,
由正弦定理可知$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$=2R,
則sinA=$\frac{a}{2R}$,sinB=$\frac{2R}$,sinC=$\frac{c}{2R}$,
$\frac{5sinC}{sinA+sinB}$=$\frac{5c}{a+b}$=$\frac{5×6}{10}$=3,
故答案為:3.

點(diǎn)評 本題考查橢圓的定義及正弦定理的應(yīng)用,考查數(shù)形結(jié)合思想,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)滿足$f({x-1})=\frac{1}{f(x)-1}$,當(dāng)x∈[-1,0]時(shí),f(x)=x,若在區(qū)間[-1,1]上,g(x)=f(x)-mx+m有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍為(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.雙曲線C的漸近線方程為y=±$\frac{{2\sqrt{3}}}{3}x$,一個(gè)焦點(diǎn)為F(0,-$\sqrt{7}$),點(diǎn)A($\sqrt{2}$,0),點(diǎn)P為雙曲線第一象限內(nèi)的點(diǎn),則當(dāng)P點(diǎn)位置變化時(shí),△PAF周長的最小值為(  )
A.8B.10C.$4+3\sqrt{7}$D.$3+3\sqrt{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,則輸出的s的值是(  )
A.7B.6C.5D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{cn}滿足cn=$\frac{{a}_{n}+1}{_{n+1}}$,數(shù)列{cn}的前n項(xiàng)和為Tn,若不等式(-1)nλ<Tn+$\frac{n}{{2}^{n-1}}$對一切n∈N*,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(μ,7),若P(ξ<2)=P(ξ>4),則μ 與Dξ的值分別為( 。
A.$μ=\sqrt{3},Dξ=\sqrt{7}$B.$μ=\sqrt{3},Dξ=7$C.μ=3,Dξ=7D.$μ=3,Dξ=\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某程序框圖如圖所示,其中$g(x)=\frac{1}{{{x^2}+x}}$,若輸出的$S=\frac{2016}{2017}$,則判斷框內(nèi)應(yīng)填入的條件為( 。
A.n<2017B.n≤2017C.n>2017D.n≥2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x-mex(m∈R,e為自然對數(shù)的底數(shù))
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)≤e2x對?x∈R恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)x1,x2(x1≠x2)是函數(shù)f(x)的兩個(gè)零點(diǎn),求證x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:|x-a|<4,命題q:(x-2)(3-x)>0.若¬p是¬q的充分不必要條件,則實(shí)數(shù)a的取值范圍是(  )
A.[-1,6]B.(-∞,-1)C.(6,+∞)D.(-∞,-1)∪(6,+∞)

查看答案和解析>>

同步練習(xí)冊答案