【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機動車行經(jīng)人行橫道時,應當減速慢行;遇行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設備所抓拍的5個月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):

月份

1

2

3

4

5

違章駕駛員人數(shù)

120

105

100

90

85

(1)請利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+

(2)預測該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);

(3)交警從這5個月內(nèi)通過該路口的駕駛員中隨機抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下2列聯(lián)表:

不禮讓斑馬線

禮讓斑馬線

合計

駕齡不超過1年

22

8

30

駕齡1年以上

8

12

20

合計

30

20

50

能否據(jù)此判斷有97.5的把握認為“禮讓斑馬線”行為與駕齡有關(guān)?

參考公式及數(shù)據(jù):,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

【答案】(1);(2)66人;(3)有的把握認為“禮讓斑馬線”行為與駕齡關(guān).

【解析】

(1)利用所給數(shù)據(jù)計算,求出回歸系數(shù),寫出回歸直線方程;
(2)由(1)中的回歸直線方程計算x=7時的值即可;
(3)由列聯(lián)表中數(shù)據(jù)計算K2,對照臨界值得出結(jié)論.

(1)由表中數(shù)據(jù)知,

,

,

∴所求回歸直線方程為

(2)由(1)知,令,則人.

(3)由表中數(shù)據(jù)得 ,

根據(jù)統(tǒng)計有的把握認為“禮讓斑馬線”行為與駕齡關(guān).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C:(5﹣m)x2+(m﹣2)y2=8(m∈R)
(1)若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;
(2)設m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=loga(x+1),g(x)=loga(1﹣x),a>0且a≠1,則使f(x)﹣g(x)>0成立的x的集合是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的圖形是由一個半徑為2的圓和兩個半徑為1的半圓組成,它們的圓心分別為O,O1 , O2 . 動點P從A點出發(fā)沿著圓弧按A→O→B→C→A→D→B的路線運動(其中A,O1 , O,O2 , B五點共線),記點P運動的路程為x,設y=|O1P|2 , y與x的函數(shù)關(guān)系為y=f(x),則y=f(x)的大致圖象是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點P(1,f(1))處的切線方程為y=3x+1,y=f(x)x=-2處有極值.

(1)f(x)的解析式.

(2)y=f(x)[-3,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖可能是下列哪個函數(shù)的圖象(

A.y=2x﹣x2﹣1
B.y=
C.y=(x2﹣2x)ex
D.y=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有下列結(jié)論:

(1)命題 ,為真命題 ;

(2)設,則 p q 的充分不必要條件 ;

(3)命題:若,則,其否命題是假命題;

(4)非零向量滿足,則的夾角為.

其中正確的結(jié)論有(

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有2名男生、3名女生,在下列不同條件下,求不同的排列方法總數(shù).

(1)全體站成一排,甲不站排頭也不站排尾;

(2)全體站成一排,女生必須站在一起;

(3)全體站成一排,男生互不相鄰.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市市民用水擬實行階梯水價,每人用水量不超過立方米的部分按/立方米收費,超出立方米的部分按/立方米收費,從該市隨機調(diào)查了位市民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖,并且前四組頻數(shù)成等差數(shù)列,

(Ⅰ)求的值及居民用水量介于的頻數(shù);

(Ⅱ)根據(jù)此次調(diào)查,為使以上居民月用水價格為/立方米,應定為多少立方米?(精確到小數(shù)點后位)

(Ⅲ)若將頻率視為概率,現(xiàn)從該市隨機調(diào)查名居民的用水量,將月用水量不超過立方米的人數(shù)記為,求其分布列及其均值.

查看答案和解析>>

同步練習冊答案