在三棱錐S-ABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,,、分別為、的中點.
(1)求二面角的余弦值;
(2)求點到平面的距離.
(1);(2).
解析試題分析:(1)本題中取中點,將會出現(xiàn)許多垂直,這正是我們解題時需要的結(jié)果,由于,則,由于平面平面,則平面,是正三角形,則,有了這些垂直后,就可以建立空間直角坐標系(以為原點,分別為軸),寫出相應(yīng)點的坐標,計算所需向量的坐標,設(shè)分別是二面角的兩個面的法向量,則二面角的余弦值,就等于(或者其相反數(shù),這要通過圖形觀察確定);(2)設(shè)平面的法向量是,則點以平面的距離為.
試題解析:⑴取中點,連結(jié)?.∵,,
∴,.∵平面平面,
平面平面,∴平面,∴.
如圖所示建立空間直角坐標系,則,,,
∴.
∴.
設(shè)為平面的一個法向量,
則,
取,則,∴,
又為平面的一個法向量,
,即二面角的余弦值為.
(2)由⑴得,又為平面的一個法向量,,
∴點到平面的距離.
考點:(1)二面角;(2)點到平面的距離.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面是菱形,,且側(cè)面平面,點是棱的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:;
(Ⅲ)若,求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,長方體中,為中點.
(1)求證:;
(2)在棱上是否存在一點,使得平面?若存在,求的長;若不存在,說明理由;
(3)若二面角的大小為,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在直角梯形中,,,,. 把沿對角線折起到的位置,如圖2所示,使得點在平面上的正投影恰好落在線段上,連接,點分別為線段的中點.
(1)求證:平面平面;
(2)求直線與平面所成角的正弦值;
(3)在棱上是否存在一點,使得到點四點的距離相等?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
正方形ADEF與梯形ABCD所在平面互相垂直,,,,點M在線段EC上且不與E,C重合.
(Ⅰ)當(dāng)點M是EC中點時,求證:平面ADEF;
(Ⅱ)當(dāng)平面BDM與平面ABF所成銳二面角的余弦值為時,求三棱錐M BDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是9m和15m,從建筑物AB的頂部A看建筑物CD的張角.
(1)求BC的長度;
(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的張角分別為,,問點P在何處時,最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,邊長為2的正方形ABCD,E,F分別是AB,BC的中點,將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于
(1)求證:⊥EF;
(2)求
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com