7.若正數(shù)x,y滿足$\frac{1}{y}+\frac{3}{x}=1$,則3x+4y的最小值是( 。
A.24B.28C.25D.26

分析 利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:∵正數(shù)x,y滿足$\frac{1}{y}+\frac{3}{x}=1$,
則3x+4y=(3x+4y)$(\frac{1}{y}+\frac{3}{x})$=13+$\frac{3x}{y}+\frac{12y}{x}$≥13+3×$2\sqrt{\frac{x}{y}×\frac{4y}{x}}$=25,當(dāng)且僅當(dāng)x=2y=5時(shí)取等號(hào).
∴3x+4y的最小值是25.
故選:C.

點(diǎn)評(píng) 本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知命題p:?x∈R,不等式x2-mx+$\frac{3}{2}$>0恒成立,命題q:橢圓$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{3-m}$=1的焦點(diǎn)在x軸上.若命題p∨q為真命題,求實(shí)數(shù)m的取值范圍(-$\sqrt{6}$,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)全集U={x∈N|x<8},集合A={2,0,1,6},B={2,0,1,7},C={2,0,1,5},則∁U((A∩C)∪B)=( 。
A.{2,0,1,7}B.{0,6,7,8}C.{2,3,4,5}D.{3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在△ABC中,M為邊BC上的任意一點(diǎn),點(diǎn)N在線段AM上,且滿足$\overrightarrow{AN}=\frac{1}{3}\overrightarrow{NM}$,若$\overrightarrow{AN}=λ\overrightarrow{AB}+μ\overrightarrow{AC}({λ,μ∈R})$,則λ+μ的值為(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,已知線段AE,BF為拋物線C:x2=2py(p>0)的兩條弦,點(diǎn)E、F不重合.函數(shù)y=ax(a>0且a≠1)的圖象所恒過(guò)的定點(diǎn)為拋物線C的焦點(diǎn).
(I)求拋物線C的方程;
(Ⅱ)已知$A({2,1})、B({-1,\frac{1}{4}})$,直線AE與BF的斜率互為相反數(shù),且A,B兩點(diǎn)在直線EF的兩側(cè).
①問(wèn)直線EF的斜率是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
②求$\overrightarrow{OE}•\overrightarrow{OF}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在四棱臺(tái)ABCD-A1B1C1D1中,四邊形ABCD是菱形,AB=2A1B1,AA1⊥平面ABCD.
(1)求證:BD⊥C1C;
(2)求證:C1C∥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對(duì)任意x∈R滿足f(x)+f′(x)<0,則下列結(jié)論正確的是( 。
A.2f(ln2)>3f(ln3)B.2f(ln2)<3f(ln3)C.2f(ln2)≥3f(ln3)D.2f(ln2)≤3f(ln3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若函數(shù)f(x)=(x-1)(x+2)(x2+ax+b)是偶函數(shù),則f(x)的最小值為( 。
A.-$\frac{25}{4}$B.$\frac{7}{4}$C.-$\frac{9}{4}$D.$\frac{41}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.己知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足$a_n^2={S_n}+{S_{n-1}}({n≥2}),{a_1}=1$;數(shù)列{bn}滿足${b_1}•{b_2}…{b_n}={2^{\frac{{n({n+1})}}{2}}}$.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an•bn}的前n項(xiàng)和為Tn,當(dāng)Tn>2017時(shí),求正整數(shù)n的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案