分析 (1)由AA1⊥平面ABCD,可證AA1⊥BD.四邊形ABCD是菱形可得AC⊥BD,由線面垂直的判定定理可證BD⊥面ACC1A1,再由線面垂直的性質(zhì)定理可證BD⊥CC1.
(2)連接AC和A1C1,設(shè)AC∩BD=E,先證明四邊形ECC1A1為平行四邊形,可得CC1∥A1E,再由線面平行的判定定理可證CC1∥平面A1BD.
解答 證明:(1)∵AA1⊥平面ABCD,
∴AA1⊥BD.
∵四邊形ABCD是菱形,∴AC⊥BD,
又 AC∩AA1=A,∴BD⊥面ACC1A1.
由CC1?面ACC1A1,
∴BD⊥CC1.
(2)連接AC和A1C1,設(shè) AC∩BD=E,由于底面ABCD是平行四邊形,故E為平行四邊形ABCD的
中心,由棱臺的定義及AB=2AD=2A1B1,可得 EC∥A1C1,且 EC=A1C1,
故ECC1A1為平行四邊形,∴CC1∥A1E,而CC1?平面A1BD,A1E?平面A1BD,
∴CC1∥平面A1BD.
點評 本題考查線面平行、垂直的判定定理、線面平行、垂直的性質(zhì)定理的應用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | x1x2<0 | B. | x1x2=1 | C. | x1x2>1 | D. | 0<x1x2<1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 24 | B. | 28 | C. | 25 | D. | 26 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[\frac{2}{3},11]$ | B. | [3,11] | C. | $[\frac{3}{2},11]$ | D. | [1,11] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 10 | C. | 12 | D. | 14 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $-\frac{3}{4}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com