20.已知向量$\overrightarrow a$=(-1,-3),$\overrightarrow b$=(2,t),且$\overrightarrow a$∥$\overrightarrow b$,則$\overrightarrow a$-$\overrightarrow b$=(-3,-9).

分析 利用向量共線的充要條件列出方程求出t,然后求解即可.

解答 解:向量$\overrightarrow a$=(-1,-3),$\overrightarrow b$=(2,t),且$\overrightarrow a$∥$\overrightarrow b$,
可得-t=-6,解得t=6.
則$\overrightarrow a$-$\overrightarrow b$=(-3,-9).
故答案為:(-3,-9);

點評 本題考查向量的共線與坐標(biāo)運算,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.不等式log${\;}_{\frac{1}{2}}}$(2x-1)<log${\;}_{\frac{1}{2}}}$(-x+5)的解集為(2,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,一船以每小時20km的速度向東航行,船在A處看到一個燈塔B在北偏東60°方向,行駛4小時后,船到達(dá)C處,看到這個燈塔在北偏東15°方向,這時船與燈塔間的距離為$40\sqrt{2}$km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=(x+a)lnx,g(x)=$\frac{{2{x^2}}}{e^x}$,已知曲線y=f(x)在x=1處的切線過點(2,3).
(1)求實數(shù)a的值.
(2)是否存在自然數(shù)k,使得函數(shù)y=f(x)-g(x)在(k,k+1)內(nèi)存在唯一的零點?如果存在,求出k;如果不存在,請說明理由.
(3)設(shè)函數(shù)h(x)=min{f(x),g(x)},(其中min{p,q}表示p,q中的較小值),對于實數(shù)m,?x0∈(0,+∞),使得h(x0)≥m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,角A,B,C的對邊分別為a,b,c,若$\frac{a-c}=\frac{a-b}{a+c}$,則角C等于(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若a>0,b>0,a+b=1,則$\frac{4}{a}+\frac{9}$的最小值為( 。
A.24B.25C.36D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.?dāng)?shù)列{an}的前n項和為Sn,且a1=1,Sn+1=3Sn+n+1,n∈N*,則{an}的通項公式an=$\frac{{3}^{n}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.計算下列各式:
(1)($\root{3}{25}$-$\sqrt{125}$)÷$\root{4}{5}$;
(2)$\frac{{a}^{2}}{\sqrt{a}•\root{3}{{a}^{2}}}$ (a>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知sinθ=$\frac{4}{5}$,且θ在第二象限,則sin2θ=-$\frac{24}{25}$.

查看答案和解析>>

同步練習(xí)冊答案