3.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(3,x),若$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)x的值為( 。
A.9B.-9C.1D.-1

分析 由斜率垂直可得數(shù)量積為0,解方程可得x值.

解答 解:∵向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(3,x),$\overrightarrow{a}$⊥$\overrightarrow$,
∴$\overrightarrow{a}•\overrightarrow$=1×3+3x=0,解得x=-1
故選:D

點評 本題考查向量的數(shù)量積和垂直關(guān)系,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.復(fù)數(shù)$\frac{2+i}{1-2i}$=i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.從含有8個個體的總體中抽取一個容量為4的樣本,則總體中每個個體被抽到的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.甲,乙兩人進行射擊比賽,每人射擊6次,他們命中的環(huán)數(shù)如下表:
5879106
6741099
(Ⅰ)根據(jù)上表中的數(shù)據(jù),判斷甲,乙兩人誰發(fā)揮較穩(wěn)定;
(Ⅱ)把甲6次射擊命中的環(huán)數(shù)看成一個總體,用簡單隨機抽樣方法從中抽取兩次命中的環(huán)數(shù)組成一個樣本,求該樣本平均數(shù)與總體平均數(shù)之差的絕對值不超過0.5的概率.
注:$\overline{x}$=$\frac{1}{n}$(x1+x2+…+xn
S2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.將389(10)化成五進位制數(shù)的末位是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(Ⅰ)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
(Ⅱ)判斷性別與休閑方式是否有關(guān)系?
P(k2>k)0.050.0250.0100.005
  k3.845.0246.6357.879
本題參考:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知圓的方程為(x-1)2+(y+1)2=5,求過圓上一點P(2,1)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)已知函數(shù)f(x)=axekx-1,g(x)=lnx+kx.當a=1時,若f(x)在(1,+∞)上為減函數(shù),g(x)在(0,1)上為增函數(shù),求實數(shù)k的值
(2)已知函數(shù)f(x)=x+$\frac{a}{x}$-2lnx,a∈R,討論函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若實數(shù)a,b,c成等比數(shù)列,則函數(shù)f(x)=ax2+2bx+c的圖象與x軸交點的個數(shù)為( 。
A.0個B.1個C.2個D.不能確定

查看答案和解析>>

同步練習(xí)冊答案