【題目】說明:請考生在(A)、(B)兩個小題中任選一題作答。

A)已知函數(shù);

(1)求的零點;

(2)若有三個零點,求實數(shù)的取值范圍.

B)已知函數(shù)

(1)求的零點;

(2)若,有4個零點,求的取值范圍.

【答案】A)(1)(2)B)(1),,-1(2)

【解析】

A)(1)分解方程即可得到答案;(2)結合函數(shù)的單調性及值域,分2種情況討論即可。

B)(1)結合函數(shù)表達式,可得到,解方程即可;(2)結合函數(shù)的單調性與值域,分三種情況,討論即可。

A)(1)當時,,;當時,,的零點是,.

(2)上,單調遞增,值域是,在上,單調遞增,值域為,如圖:

有三個零點,

,時,1個解,時,2個解,

則當2個解,不成立,

時,1個解,則,即,滿足題意。

B)(1)由

時,,或者

,,-1,

的零點為,,,-1.

(2)上,單調遞增,值域是,在上,單調遞增,值域為,上,單調遞增,值域為,在上,單調遞增,值域為,

,則,

時,只有一個解,,不成立;

時,2個解,,,

時,有兩解,若時,最多1個解,

時,至多三個解,不合題意。

時,2個解,,,

時,2解,若時,2解,

時,4個解,滿足題意。

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,△ABC是圓的內接三角形,∠BAC的平分線交圓于點D,交BC于E,過點B的圓的切線與AD的延長線交于點F,在上述條件下,給出下列四個結論:
①BD平分∠CBF;
②FB2=FDFA;
③AECE=BEDE;
④AFBD=ABBF.

所有正確結論的序號是(
A.①②
B.③④
C.①②③
D.①②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)當時,函數(shù),處的切線互相垂直,求的值;

(2)當函數(shù)在定義域內不單調時,求證:;

(3)是否存在實數(shù),使得對任意,都有函數(shù)的圖象在的圖象的下方?若存在,請求出最大整數(shù)的值;若不存在,請說理由.(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某公司要在A、B兩地連線上的定點C處建造廣告牌CD,其中D為頂端,AC長35米,CB長80米,設點A、B在同一水平面上,從A和B看D的仰角分別為α和β.

(1)設計中CD是鉛垂方向,若要求α≥2β,問CD的長至多為多少(結果精確到0.01米)?
(2)施工完成后,CD與鉛垂方向有偏差,現(xiàn)在實測得α=38.12°,β=18.45°,求CD的長(結果精確到0.01米).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某中學舉行的電腦知識競賽中,將高一年級兩個班參賽的學生成績進行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知圖中從左到右的第一,第三,第四,第五小組的頻率分別是0.30,0.15,0.10,0.05,第二小組的頻數(shù)是40.

(1)補齊圖中頻率分布直方圖,并求這兩個班參賽學生的總人數(shù);

(2)利用頻率分布直方圖,估算本次比賽學生成績的平均數(shù)和中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機變量的概率分布規(guī)律為 , 其中是常數(shù),則的值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形所在的平面與平面垂直,的交點,,且

(Ⅰ)求證:平面

(Ⅱ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個機器人每一秒鐘前進一步或后退一步,程序設計師設計的程序是讓機器人以先前進3步,然后再后退2步的規(guī)律移動.如果將機器人放在數(shù)軸的原點,面向正的方向在數(shù)軸上移動(1步的距離為1個單位長度).令表示第秒時機器人所在位置的坐標,且記,則下列結論中錯誤的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求不等式的解集.

(2)討論不等式的解集.

查看答案和解析>>

同步練習冊答案