【題目】已知函數(shù).

(1)若曲線在點處的切線斜率為1,求函數(shù)上的最值;

(2)令,若時,恒成立,求實數(shù)的取值范圍;

(3)當時,證明.

【答案】(Ⅰ); (Ⅱ); (Ⅲ)證明過程見解析.

【解析】

試題分析:(Ⅰ)根據(jù)曲線在點處的切線斜率為1,可求出參數(shù)的值,再對導函數(shù)的正負,求出上單調(diào)性,即可求出 的最值;(Ⅱ)由,構(gòu)造輔助函數(shù),再對進行求導,討論的取值范圍,利用函數(shù)單調(diào)性判斷函數(shù)的最值,進而確定的取值范圍;(Ⅲ)構(gòu)造輔助函數(shù),求導,求出在的單調(diào)性,可求出的最小值,即可證明不等式成立.

試題解析:(Ⅰ)∵,∴,∴,

,記,∴,令

時,單減;當時,單增,

恒成立,所以上單調(diào)遞增,

(Ⅱ)∵,∴

,∴,

時,,∴上單增,∴

(i)當時,恒成立,即,∴上單增,

,所以

(ii)當時,∵上單增,且

時,

,使,即

時,,即單減;

時,,即單增.

,

,由,∴,記,

,∴上單調(diào)遞增,

,∴,

綜上,

(Ⅲ)等價于,

,∴等價于

,

,∴

時,,單減;

時,單增.

處有極小值,即最小值,

,

時,不等式成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè),

)求的單調(diào)區(qū)間和最小值;

)討論的大小關(guān)系;

)求的取值范圍,使得對任意成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來我國電子商務行業(yè)迎來篷勃發(fā)展的新機遇,2016年雙11期間,某購物平臺的銷售業(yè)績高達一千多億人民幣.與此同時,相關(guān)管理部門推出了針對電商的商品和服務的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,對商品的好評率為0.6,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為80次.

(Ⅰ)請完成如下列聯(lián)表;

(Ⅱ)是否可以在犯錯誤的概率不超過0.1%的前提下,認為商品好評與服務好評有關(guān)?

(Ⅲ)若針對商品的好評率,采用分層抽樣的方式從這200次交易中取出5次交易,并從中選擇兩次交易進行客戶回訪,求只有一次好評的概率.

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是奇函數(shù),且f(2).

(1)求實數(shù)mn的值;

(2)求函數(shù)f(x)在區(qū)間[-2,-1]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)

1)當時,函數(shù)處的切線互相垂直,求的值;

2)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍;

(3)是否存在正實數(shù),使得對任意正實數(shù)恒成立?若存在,求出滿足條件的實數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C (ab>0)的離心率為,點P(0,1)和點A(m,n)(m≠0)都在橢圓C上,直線PAx軸于點M.

(1)求橢圓C的方程,并求點M的坐標(用m,n表示);

(2)設(shè)O為原點,點B與點A關(guān)于x軸對稱,直線PBx軸于點N.問:y軸上是否存在點Q,使得∠OQM=∠ONQ?若存在,求點Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), 滿足關(guān)系(其中是常數(shù)).

)如果, ,求函數(shù)的值域;

)如果, ,且對任意,存在, ,使得恒成立,求的最小值;

)如果,求函數(shù)的最小正周期(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|y=},B={x|x2-x-6=0}.

(1)若a=-1,求A∩B;

(2)若()∩B=,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)二次函數(shù)f(x)滿足f(2+x)=f(2-x),對于x∈R恒成立,且f(x)=0的兩個實數(shù)根的平方和為10,f(x)的圖象過點(0,3),求f(x)的解析式.

查看答案和解析>>

同步練習冊答案