【題目】設函數(shù),給定下列命題:

若方程有兩個不同的實數(shù)根,;

若方程恰好只有一個實數(shù)根;

,總有恒成立;

若函數(shù)有兩個極值點則實數(shù).

則正確命題的個數(shù)為( )

A. B. C. D.

【答案】C

【解析】

利用導數(shù)研究函數(shù)的單調性,零點,極值以及恒成立問題.

對于①,的定義域,,

,可知單調遞減,在單調遞增,,且當,又,

從而要使得方程有兩個不同的實根,即有兩個不同的交點,

所以,故①正確

對于②,易知不是該方程的根,

時,,方程有且只有一個實數(shù)根,等價于

只有一個交點,,又,令,即,有,知單減,在上單增,是一條漸近線,極小值為。

大致圖像可知,故②錯

對于③ 當時,

恒成立,

等價于恒成立,

即函數(shù)上為增函數(shù),

恒成立,

上恒成立,

,則,

,有,

從而上單調遞增,在上單調遞減,

,

于是,故③正確.

對于④ 有兩個不同極值點,

等價于有兩個不同的正根,

即方程有兩個不同的正根,

由③可知,,即,則④正確.

故正確命題個數(shù)為3,故選.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列的首項為,公比為,其前項和為,下列命題中正確的是______.(寫出全部正確命題的序號)

1)等比數(shù)列單調遞增的充要條件是,且;

2)數(shù)列:,,,……,也是等比數(shù)列;

3

4)點在函數(shù),為常數(shù),且,)的圖像上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面六個命題中,其中正確的命題序號為______________.

①函數(shù)的最小正周期為;

②函數(shù)的圖象關于點對稱;

③函數(shù)的圖象關于直線對稱;

④函數(shù),的單調遞減區(qū)間為;

⑤將函數(shù)向右平移)個單位所得圖象關于軸對稱,則的最小正值為;

⑥關于的方程的兩個實根中,一個根比1大,一個根比-1小,則的取值范圍為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省高考改革方案指出:該省高考考生總成績將由語文數(shù)學英語3門統(tǒng)一高考成績和學生從思想政治、歷史、地理、物理、化學、生物6門等級性考試科目中自主選擇3個,按獲得該次考試有效成績的考生(缺考考生或未得分的考生除外)總人數(shù)的相應比例的基礎上劃分等級,位次由高到低分為A、B、C、D、E五等級,該省的某市為了解本市萬名學生的某次選考歷史成績水平,從中隨機抽取了名學生選考歷史的原始成績,將所得成績整理后,繪制出如圖所示的頻率分布直方圖.

(Ⅰ)估算名學生成績的平均值和中位數(shù)(同一組中的

數(shù)據(jù)用該組區(qū)間的中點值作代表);

(Ⅱ)若抽取的分以上的只有名男生,現(xiàn)從抽樣的分以上學生中隨機抽取人,求抽取到名女生的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,若存在三個不同實數(shù)使得,則的取值范圍是(

A.B.C.D.01

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線、與平面,下列命題:

①若平行內的一條直線,則;②若垂直內的兩條直線,則;③若,且,,則;④若,,且,則;⑤若,,則;⑥若,,則

其中正確的命題為______(填寫所有正確命題的編號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校初一年級全年級共有名學生,為了拓展學生的知識面,在放寒假時要求學生在假期期間進行廣泛的閱讀,開學后老師對全年級學生的閱讀量進行了問卷調查,得到了如圖所示的頻率分布直方圖(部分已被損毀),統(tǒng)計人員記得根據(jù)頻率直方圖計算出學生的平均閱讀量為萬字.根據(jù)閱讀量分組按分層抽樣的方法從全年級人中抽出人來作進一步調查.

(1)從抽出的人中選出人來擔任正副組長,求這兩個組長中至少有一人的閱讀量少于萬字的概率;

(2)為進一步了解廣泛閱讀對今后學習的影響,現(xiàn)從抽出的人中挑選出閱讀量低于萬字和高于萬字的同學,再從中隨機選出人來長期跟蹤調查,求這人中來自閱讀量為萬到萬字的人數(shù)的概率分布列和期望值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)隨著手機的發(fā)展,微信越來越成為人們交流的一種方式.某機構對使用微信交流的態(tài)度進行調查,隨機抽取了50人,他們年齡的頻數(shù)分布及對使用微信交流的贊成人數(shù)如下表:

年齡(單位:歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(1)若以年齡45歲為分界點,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為使用微信交流的態(tài)度與人的年齡有關.

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計

贊成的人數(shù)

不贊成的人數(shù)

合計

(2)若從年齡在[25,35)和[55,65)的被調查人中按照分層抽樣的方法選取6人進行追蹤調查,并給予其中3紅包獎勵,求3人中至少有1人年齡在[55,65)的概率.

參考公式:,.

參考數(shù)據(jù):

0.100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知五面體ABCDEF中,四邊形CDEF為矩形,,CD2DE2AD2AB4AC=,

1)求證:AB平面ADE

2)求平面EBC與平面BCF所成的銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案