【題目】某省高考改革方案指出:該省高考考生總成績(jī)將由語(yǔ)文數(shù)學(xué)英語(yǔ)3門統(tǒng)一高考成績(jī)和學(xué)生從思想政治、歷史、地理、物理、化學(xué)、生物6門等級(jí)性考試科目中自主選擇3個(gè),按獲得該次考試有效成績(jī)的考生(缺考考生或未得分的考生除外)總?cè)藬?shù)的相應(yīng)比例的基礎(chǔ)上劃分等級(jí),位次由高到低分為A、B、C、D、E五等級(jí),該省的某市為了解本市萬(wàn)名學(xué)生的某次選考?xì)v史成績(jī)水平,從中隨機(jī)抽取了名學(xué)生選考?xì)v史的原始成績(jī),將所得成績(jī)整理后,繪制出如圖所示的頻率分布直方圖.

(Ⅰ)估算名學(xué)生成績(jī)的平均值和中位數(shù)(同一組中的

數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(Ⅱ)若抽取的分以上的只有名男生,現(xiàn)從抽樣的分以上學(xué)生中隨機(jī)抽取人,求抽取到名女生的概率?

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ)平均數(shù)等于各組底邊中點(diǎn)乘以矩形面積的和;中位數(shù)等于從左邊開始算的頻率為0.5時(shí)對(duì)應(yīng)的底邊數(shù)值。

(Ⅱ)由圖可求得抽選的50人中歷史選考分?jǐn)?shù)在90分以上的人數(shù),根據(jù)古典概型計(jì)算方法,列出所有可能,即可求得符合要求的概率值。

(Ⅰ)

由已知可設(shè)中位數(shù)為,則

所以,所求中位數(shù)為.

(Ⅱ)抽選的50人中歷史選考分?jǐn)?shù)在90分以上的人數(shù)為

易知90分以上的有1名男生,3名女生,設(shè)考分在90分以上的男生為,女生為,從中抽取2人結(jié)果有6個(gè)結(jié)果,其中2名女生的結(jié)果有3種,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】扇形AOB中心角為,所在圓半徑為,它按如圖()()兩種方式有內(nèi)接矩形CDEF

(1)矩形CDEF的頂點(diǎn)C、D在扇形的半徑OB上,頂點(diǎn)E在圓弧AB上,頂點(diǎn)F在半徑OA上,設(shè)

(2)點(diǎn)M是圓弧AB的中點(diǎn),矩形CDEF的頂點(diǎn)D、E在圓弧AB上,且關(guān)于直線OM對(duì)稱,頂點(diǎn)C、F分別在半徑OBOA上,設(shè);

試研究(1)(2)兩種方式下矩形面積的最大值,并說(shuō)明兩種方式下哪一種矩形面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱的底面邊長(zhǎng)和側(cè)棱長(zhǎng)均為2,為棱的中點(diǎn) .

(1)證明:平面平面;

(2)是否存在平行于的動(dòng)直線,分別與棱交于點(diǎn),使得平面與平面所成的銳二面角為,若存在,求出點(diǎn)到直線的距離;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,集合滿足,則所有滿足條件的集合的個(gè)數(shù)為(

A.8B.16C.15D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

(1)若函數(shù)上為減函數(shù),求實(shí)數(shù)的取值范圍;

(2)令,已知函數(shù),若對(duì)任意,總存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),給定下列命題:

若方程有兩個(gè)不同的實(shí)數(shù)根,

若方程恰好只有一個(gè)實(shí)數(shù)根,

,總有恒成立,;

若函數(shù)有兩個(gè)極值點(diǎn),則實(shí)數(shù).

則正確命題的個(gè)數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知圓的圓心坐標(biāo)為,半徑為,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,直線的參數(shù)方程為: 為參數(shù))

(1)求圓和直線的極坐標(biāo)方程;

(2)點(diǎn) 的極坐標(biāo)為,直線與圓相較于,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值來(lái)衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,記其質(zhì)量指標(biāo)值

,當(dāng)時(shí),產(chǎn)品為一級(jí)品;當(dāng)時(shí),產(chǎn)品為二級(jí)品,當(dāng)時(shí),產(chǎn)品為三級(jí)品,現(xiàn)用兩種新配方(分別稱為配方和配方)做實(shí)驗(yàn),各生產(chǎn)了100件這種產(chǎn)品,

并測(cè)量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面的試驗(yàn)結(jié)果:(以下均視頻率為概率)

配方的頻數(shù)分配表

指標(biāo)值分組

頻數(shù)

10

30

40

20

配方的頻數(shù)分配表

指標(biāo)值分組

頻數(shù)

5

10

15

40

30

(Ⅰ)若從配方產(chǎn)品中有放回地隨機(jī)抽取3件,記“抽出的配方產(chǎn)品中至少1件二級(jí)品”為事件,求事件發(fā)生的概率;

(Ⅱ)若兩種新產(chǎn)品的利潤(rùn)率與質(zhì)量指標(biāo)滿足如下關(guān)系:其中,從長(zhǎng)期來(lái)看,投資哪種配方的產(chǎn)品平均利潤(rùn)率較大?

查看答案和解析>>

同步練習(xí)冊(cè)答案