已知橢圓C:的兩個(gè)焦點(diǎn)是F1(c,0),F(xiàn)2(c,0)(c>0)。
(I)若直線與橢圓C有公共點(diǎn),求的取值范圍;
(II)設(shè)E是(I)中直線與橢圓的一個(gè)公共點(diǎn),求|EF1|+|EF2|取得最小值時(shí),橢圓的方程;
(III)已知斜率為k(k≠0)的直線l與(II)中橢圓交于不同的兩點(diǎn)A,B,點(diǎn)Q滿足   ,其中N為橢圓的下頂點(diǎn),求直線l在y軸上截距的取值范圍.

(I).(II).(III)直線縱截距的范圍是.

解析試題分析:(I)由題意聯(lián)立方程組
,
根據(jù),即可得到的取值范圍是.
(II)由橢圓的定義得,
,得到當(dāng)時(shí),有最小值,確定得到橢圓的方程的方程.
(III)設(shè)直線方程為,
通過聯(lián)立 ,整理得到一元二次方程,設(shè),
應(yīng)用韋達(dá)定理,結(jié)合的中點(diǎn),,得到,可建立的方程, 從而由得到使問題得解.
試題解析:(I)由題意知.

所以,解得
所以求的取值范圍是.
(II)由橢圓的定義得,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2d/c/bewfx.png" style="vertical-align:middle;" />,所以當(dāng)時(shí),有最小值,
此時(shí)橢圓的方程的方程為.
(III)設(shè)直線方程為,
整理得
化簡(jiǎn)得
設(shè)

的中點(diǎn),所以
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e3/b/zcsgb.png" style="vertical-align:middle;" />,所以
,化簡(jiǎn)得

所以
,所以
.
考點(diǎn):橢圓的定義、標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:的左、右焦點(diǎn)和短軸的一個(gè)端點(diǎn)構(gòu)成邊長(zhǎng)為4的正三角形.
(1)求橢圓C的方程;
(2)過右焦點(diǎn)的直線與橢圓C相交于A、B兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知拋物線,設(shè)點(diǎn),為拋物線上的動(dòng)點(diǎn)(異于頂點(diǎn)),連結(jié)并延長(zhǎng)交拋物線于點(diǎn),連結(jié)、并分別延長(zhǎng)交拋物線于點(diǎn),連結(jié),設(shè)、的斜率存在且分別為、.

(1)若,,,求;
(2)是否存在與無(wú)關(guān)的常數(shù),是的恒成立,若存在,請(qǐng)將、表示出來(lái);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是橢圓E:的兩個(gè)焦點(diǎn),拋物線的焦點(diǎn)為橢圓E的一個(gè)焦點(diǎn),直線y=上到焦點(diǎn)F1,F(xiàn)2距離之和最小的點(diǎn)P恰好在橢圓E上,
(Ⅰ)求橢圓E的方程;
(Ⅱ)如圖,過點(diǎn)的動(dòng)直線交橢圓于A、B兩點(diǎn),是否存在定點(diǎn)M,使以AB為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知坐標(biāo)平面內(nèi),.動(dòng)點(diǎn)P與外切與內(nèi)切.
(1)求動(dòng)圓心P的軌跡的方程;
(2)若過D點(diǎn)的斜率為2的直線與曲線交于兩點(diǎn)A、B,求AB的長(zhǎng);
(3)過D的動(dòng)直線與曲線交于A、B兩點(diǎn),線段中點(diǎn)為M,求M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線,直線與E交于A、B兩點(diǎn),且,其中O為原點(diǎn).
(1)求拋物線E的方程;
(2)點(diǎn)C坐標(biāo)為,記直線CA、CB的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線與直線相交于A、B 兩點(diǎn).
(1)求證:;
(2)當(dāng)的面積等于時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓.

(1)橢圓的短軸端點(diǎn)分別為(如圖),直線分別與橢圓交于兩點(diǎn),其中點(diǎn)滿足,且.
①證明直線軸交點(diǎn)的位置與無(wú)關(guān);
②若∆面積是∆面積的5倍,求的值;
(2)若圓:.是過點(diǎn)的兩條互相垂直的直線,其中交圓、兩點(diǎn),交橢圓于另一點(diǎn).求面積取最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

)如圖,橢圓,、、為橢圓的頂點(diǎn)

(Ⅰ)若橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為,求橢圓方程;
(Ⅱ)已知:直線相交于,兩點(diǎn)(不是橢圓的左右頂點(diǎn)),并滿足 試研究:直線是否過定點(diǎn)? 若過定點(diǎn),請(qǐng)求出定點(diǎn)坐標(biāo),若不過定點(diǎn),請(qǐng)說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案