如圖,在平面直角坐標系中,已知拋物線,設(shè)點,,為拋物線上的動點(異于頂點),連結(jié)并延長交拋物線于點,連結(jié)、并分別延長交拋物線于點、,連結(jié),設(shè)、的斜率存在且分別為、.

(1)若,,求;
(2)是否存在與無關(guān)的常數(shù),是的恒成立,若存在,請將、表示出來;若不存在請說明理由.

(1)2;(2).

解析試題分析:(1)依題意求直線的方程,設(shè)兩點的坐標分別為,聯(lián)立方程組消去得到關(guān)于的方程,由韋達定理求出
,在根據(jù)弦長公式求解;(2)設(shè)求直線的方程代入拋物線方程,消去得到關(guān)于的方程,找到的關(guān)系是,用表示點的坐標,同理用表示點的坐標,由于三點共線,找到的關(guān)系,最后用斜率公式求,整理即得.
試題解析:(1)直線,設(shè)





           4分
(2)設(shè)
則直線的方程為:,代入拋物線方程,
整理得,
,即
從而,故點
同理,點          8分
三點共線



整理得
所以,

                   13分
考點:直線與拋物線的位置關(guān)系,斜率公式,韋達定理, 弦長公式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,是橢圓的左、右頂點,橢圓的離心率為,右準線的方程為.

(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點,直線于點,以為直徑的圓記為. ①若恰好是橢圓的上頂點,求截直線所得的弦長;
②設(shè)與直線交于點,試證明:直線軸的交點為定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左、右焦點分別為、,橢圓上的點滿足,且的面積
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使與橢圓交于不同的兩點、,且線段恰被直線平分?若存在,求出的斜率取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線C:,定點M(0,5),直線軸交于點F,O為原點,若以O(shè)M為直徑的圓恰好過與拋物線C的交點.
(1)求拋物線C的方程;
(2)過點M作直線交拋物線C于A,B兩點,連AF,BF延長交拋物線分別于,求證: 拋物線C分別過兩點的切線的交點Q在一條定直線上運動.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知橢圓的兩個焦點分別為、,且到直線的距離等于橢圓的短軸長.

(Ⅰ) 求橢圓的方程;
(Ⅱ) 若圓的圓心為(),且經(jīng)過、,是橢圓上的動點且在圓外,過作圓的切線,切點為,當的最大值為時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左、右焦點分別為、,為原點.
(1)如圖1,點為橢圓上的一點,的中點,且,求點軸的距離;

(2)如圖2,直線與橢圓相交于、兩點,若在橢圓上存在點,使四邊形為平行四邊形,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓過定點,圓心在拋物線上,、為圓軸的交點.
(1)當圓心是拋物線的頂點時,求拋物線準線被該圓截得的弦長.
(2)當圓心在拋物線上運動時,是否為一定值?請證明你的結(jié)論.
(3)當圓心在拋物線上運動時,記,,求的最大值,并求出此時圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:的兩個焦點是F1(c,0),F(xiàn)2(c,0)(c>0)。
(I)若直線與橢圓C有公共點,求的取值范圍;
(II)設(shè)E是(I)中直線與橢圓的一個公共點,求|EF1|+|EF2|取得最小值時,橢圓的方程;
(III)已知斜率為k(k≠0)的直線l與(II)中橢圓交于不同的兩點A,B,點Q滿足   ,其中N為橢圓的下頂點,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的中心在坐標原點,短軸長為4,且有一個焦點與拋物線的焦點重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經(jīng)過定點M(2,0)且斜率不為0的直線交橢圓C于A、B兩點,試問在x軸上是否另存在一個定點P使得始終平分?若存在,求出點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案