18.曲線y=x•ex在x=1處切線的斜率等于(  )
A.2eB.eC.2D.1

分析 求出函數(shù)的導(dǎo)數(shù),然后求解切線的斜率即可.

解答 解:曲線y=x•ex,可得y′=ex+xex,
曲線y=x•ex在x=1處切線的斜率:e+e=2e.
故選:A.

點(diǎn)評 本題考查導(dǎo)數(shù)的應(yīng)用,切線的斜率的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$=(A,$\sqrt{3}$Acosωx),$\overrightarrow$=($\frac{1}{A}$+cos2ωx,sinωx)(A≠0,ω>0),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$在區(qū)間[m,n]上單調(diào),且|m-n|的最大值是$\frac{π}{2}$,函數(shù)f(x)的圖象在y軸上的截距為$\frac{3}{2}$,則f(x)的一個對稱中心為( 。
A.(-$\frac{π}{12}$,0)B.(-$\frac{π}{12}$,$\frac{5}{4}$)C.(-$\frac{5π}{12}$,0)D.($\frac{5}{6}$π,$\frac{5}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知三棱錐P-ABC的四個頂點(diǎn)均在同一個球面上,底面△ABC滿足BA=BC=$\sqrt{6}$,$∠ABC=\frac{π}{2}$,若該三棱錐體積的最大值為3,則其外接球的體積為( 。
A.B.16πC.$\frac{16}{3}$πD.$\frac{32}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若$|{\overrightarrow a}|=2,\overrightarrow b=({\sqrt{2},\sqrt{2}}),\overrightarrow a•({\overrightarrow b-\overrightarrow a})+2=0$,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.四棱錐P-ABCD,側(cè)面PCD為邊長為2的正三角形,底面ABCD為對角線互相垂直的等腰梯形,M為AD的中點(diǎn),$PO=\sqrt{2}$. 
(Ⅰ)求證:PM⊥BC;
(Ⅱ)若△PAB的面積為$\frac{{\sqrt{5}}}{2}$,求三棱錐C-PAB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若命題p:已知0<a<1,?x<0,ax>1,則¬p為( 。
A.已知a>1,?x>0,ax≤1B.$已知0<a<1,?{x_0}<0,{a^{x_0}}≤1$
C.$已知0<a<1,?{x_0}≥0,{a^{x_0}}≤1$D.已知a>1,?x>0,ax≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,|$\overrightarrow{a}$|=2,$\overrightarrow$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),則|$\overrightarrow{a}$+2$\overrightarrow$|=( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.4D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某學(xué)校有5個班級的同學(xué)一起到某工廠參加社會實(shí)踐活動,該工廠5個不同的車間供學(xué)生選擇,每個班級任選一個車間進(jìn)行時間學(xué)習(xí),則恰有2個班級選擇甲車間,1個班級選擇乙車間的方案有270種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若x,y滿足約束條件$\left\{\begin{array}{l}x+y-5≤0\\ y≥x+1\\ x≥0\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y-1的最大值是6.

查看答案和解析>>

同步練習(xí)冊答案