分析 (1)利用偶函數(shù)的定義,即可求實數(shù)m的值;
(2)利用分母不為0,求該函數(shù)f(x)的定義域;
(3)x>0時,f(x)>0,f(x)為偶函數(shù),x<0時,f(x)>0,即可證明證明:f(x)>0.
解答 (1)解:∵f(x)=($\frac{1}{{3}^{x}-1}$+m)x,且f(x)為偶函數(shù),
∴f(-x)=f(x),即($\frac{1}{{3}^{-x}-1}$+m)(-x)=($\frac{1}{{3}^{x}-1}$+m)x,
∴m=$\frac{1}{2}$;
(2)解:∵f(x)=($\frac{1}{{3}^{x}-1}$+$\frac{1}{2}$)x,
∴3x-1≠0,
∴x≠0,
∴函數(shù)f(x)的定義域為{x|x≠0};
(3)證明:x>0時,3x-1>0,∴f(x)=($\frac{1}{{3}^{x}-1}$+$\frac{1}{2}$)x>0
∵f(x)為偶函數(shù),∴x<0時,f(x)>0.
∴f(x)>0.
點(diǎn)評 本題考查偶函數(shù)的性質(zhì),考查函數(shù)的定義域,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | 7 | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com