已知偶函數(shù)滿足:當(dāng)時(shí),,當(dāng)時(shí),.
(Ⅰ).求表達(dá)式;
(Ⅱ).若直線與函數(shù)的圖像恰有兩個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅲ).試討論當(dāng)實(shí)數(shù)滿足什么條件時(shí),直線的圖像恰有個(gè)公共點(diǎn),且這個(gè)公共點(diǎn)均勻分布在直線上.(不要求過程)

(Ⅰ).;(Ⅱ).  (Ⅲ).當(dāng)時(shí),
當(dāng)時(shí), 此時(shí); 當(dāng)時(shí),,
當(dāng)時(shí)此時(shí).

解析試題分析:(1)由為偶函數(shù),則有,又因?yàn)楫?dāng),,所以當(dāng)時(shí),,即可求出 .當(dāng)時(shí),同理可求出此時(shí)的.(2)畫出的大致圖像,由圖1易知,當(dāng)時(shí),函數(shù)恰有兩個(gè)交點(diǎn),所以當(dāng)時(shí),函數(shù)無交點(diǎn),易得當(dāng)時(shí)恒成立,當(dāng)時(shí),則有,即可求出.
當(dāng),時(shí),函數(shù)的圖像如圖2所示,此時(shí)直線的圖像若恰有個(gè)公共點(diǎn),且這個(gè)公共點(diǎn)均勻分布在直線上,則易知時(shí)符合題意,設(shè)時(shí)由左到右的兩個(gè)交點(diǎn)的橫坐標(biāo)分別為,由函數(shù)的對稱性易知,,此時(shí).其他情況同理即可求出.

圖1                                 圖2
試題解析:(1)為偶函數(shù),則有
當(dāng)時(shí),
當(dāng)時(shí),,
故有
(2)如下圖,當(dāng)時(shí),由圖像易知函數(shù)恰有兩個(gè)交點(diǎn)
當(dāng)時(shí),函數(shù)無交點(diǎn)

當(dāng)時(shí),此時(shí)符合題意
當(dāng)時(shí),由
可得
由偶函數(shù)的對稱性可知時(shí),
時(shí)的情況相同
故綜上:

(3)當(dāng)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,函數(shù).
(1) 如果實(shí)數(shù)滿足,函數(shù)是否具有奇偶性? 如果有,求出相應(yīng)的值;如果沒有,說明原因;
(2) 如果,討論函數(shù)的單調(diào)性。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)集合,.
⑴求的值;
⑵判斷函數(shù)的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),當(dāng)時(shí),對應(yīng)值的集合為.
(1)求的值;(2)若,求該函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖象關(guān)于軸對稱,且.
(1)求函數(shù)的解析式;
(2)解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地開發(fā)了一個(gè)旅游景點(diǎn),第1年的游客約為100萬人,第2年的游客約為120萬人.某數(shù)學(xué)興趣小組綜合各種因素預(yù)測:①該景點(diǎn)每年的游客人數(shù)會(huì)逐年增加;②該景點(diǎn)每年的游客都達(dá)不到130萬人.該興趣小組想找一個(gè)函數(shù)來擬合該景點(diǎn)對外開放的第年與當(dāng)年的游客人數(shù)(單位:萬人)之間的關(guān)系.
(1)根據(jù)上述兩點(diǎn)預(yù)測,請用數(shù)學(xué)語言描述函數(shù)所具有的性質(zhì);
(2)若=,試確定的值,并考察該函數(shù)是否符合上述兩點(diǎn)預(yù)測;
(3)若=,欲使得該函數(shù)符合上述兩點(diǎn)預(yù)測,試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)在[0,+∞)上是減函數(shù),試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),
(1)若的圖像關(guān)于對稱,且,求的解析式;
(2)對于(1)中的,討論的圖像的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)已知函數(shù))在區(qū)間上有最大值和最小值.設(shè)
(1)求的值;
(2)若不等式上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案