【題目】給出下列命題:

用反證法證明命題ab,c為實數(shù),且,則,時,要給出的假設是:a,b,c都不是正數(shù);

若函數(shù)處取得極大值,則;

用數(shù)學歸納法證明,在驗證成立時,不等式的左邊是;

數(shù)列的前n項和,則是數(shù)列為等比數(shù)列的充要條件;

上述命題中,所有正確命題的序號為______

【答案】

【解析】

對每個命題逐個分析,判斷它的正確與否.

①假設是a,b,c不都是正數(shù);所以①不正確;

②函數(shù),則,

若在處取得極大值,則時方程的根,所以,解得,

,,時,

所以是極小值點,與題意矛盾,所以②不正確;

時,左邊加到,所以③正確;

④由題意,時,,若是等比數(shù)列,則,,即

所以是必要條件;當時,,,

,是等比數(shù)列,所以是充分條件,所以④正確.

故答案為:③④.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若對于曲線f(x)=-exx(e為自然對數(shù)的底數(shù))的任意切線l1,總存在曲線g(x)=ax+2cosx的切線l2,使得l1l2,則實數(shù)a的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖象向右平移個單位,在向上平移一個單位,得到g(x)的圖象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],則x1﹣2x2的最大值為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,假命題的是( )

A.一條直線與兩個平行平面中的一個相交,則必與另一個平面相交.

B.平行于同一平面的兩條直線一定平行.

C.如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面.

D.若直線不平行于平面,且不在平面內(nèi),則在平面內(nèi)不存在與平行的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線.

(1)若直線經(jīng)過拋物線的焦點,求拋物線的準線方程;

(2)若斜率為-1的直線經(jīng)過拋物線的焦點,且與拋物線交于,兩點,當時,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,橢圓的左、右焦點分別為,.過焦點且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.

(1)求橢圓的標準方程;

(2)是否存在直線與橢圓相交于兩點,使得?若存在,求的取值范圍;若不存在,請說明理由!

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,底面是邊長為4的正三角形,底面,點分別為的中點,且異面直線所成的角的大小為.

(1)求證:平面平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)有兩個零點

(Ⅰ)求實數(shù)的取值范圍;

(Ⅱ)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校在年的自主招生考試成績中隨機抽取名學生的筆試成績,按成績分組:第,第,第,第,第得到的頻率分布直方圖如圖所示

分別求第組的頻率;

若該校決定在第組中用分層抽樣的方法抽取名學生進入第二輪面試,

已知學生甲和學生乙的成績均在第組,求學生甲和學生乙同時進入第二輪面試的概率;

根據(jù)直方圖試估計這名學生成績的平均分.(同一組中的數(shù)據(jù)用改組區(qū)間的中間值代表)

查看答案和解析>>

同步練習冊答案